Какой буквой обозначается напряжение
Формула напряжения электрического поля в физике
Содержание:
- Определение и формула напряжения электрического поля
- Единицы измерения напряжения электрического поля
- Примеры решения задач
Определение и формула напряжения электрического поля
Определение
Скалярную физическую величину, численно равную работе, которую совершает электростатические и сторонние силы, перемещая единичный положительный заряд, называют напряжением (падением напряжения) на участке цепи. Напряжение обозначают буквой U. Математическая формулировка определения напряжения имеет вид:
$$U=\frac{A}{q}(1)$$
где A - работа, которую совершает сила над зарядом qна некотором участке цепи.
Пусть пробный заряд (q>0) перемещается в однородном электрическом поле под воздействием сил рассматриваемого поля из точки 1 в точку 2 на расстояние d (рис.1) в направлении поля.
Работа, которую совершают силы поля за счет его потенциальной энергии, равна:
$$A=\overline{F d}=F d=E q d(2)$$
где E – напряженность электрического поля. Из определения напряжения электрического поля и выражения (2) получаем, что формулой для расчета напряжения однородного поля можно считать:
$$U=E d(3)$$
При перемещении положительного заряда из точки (1), имеющей потенциал $\varphi_{1}$ в точку (2) c потенциалом $\varphi_{2}$ напряжение между этими двумя точками поля равноразности потенциалов этих точек:
$$U=\varphi_{1}-\varphi_{2}(4)$$
В электростатическом поле напряжение между двумя точками не зависит от формы пути, который соединяет данные точки. В электростатическом поле напряжение вдоль замкнутого контура всегда равно нулю. Поэтому для электростатического поля имеется возможность ввода разности потенциалов, которая однозначно определена действующим полем и служит характеристикой поля.
Зная напряженность поля в каждой точке можно вычислитьразность напряжение между двумя любыми точками:
$$U=\int_{1}^{2} E_{s} d s(5)$$
Es – проекция вектора напряженности поля на направление ds, ds – элемент перемещения заряда. {-3}(B)$$
Ответ. $U = 0,12 B$
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Пример
Задание. Бесконечно длинная, прямая нить заряжена равномерно с линейной плотностью т. Каково напряжение поля между двумя точками, если одна точка в два раза дальше от нити, чем первая?
Решение. Напряженность поля, которое создает бесконечно длинная, прямая нить, равномерно заряженная по длине, находится при помощи теоремы Гаусса:
$$\int \bar{E} d \bar{S}=\frac{\tau h}{\varepsilon_{0}} \rightarrow E 2 \pi r h=\frac{\tau h}{\varepsilon_{0}} \rightarrow E=\frac{\tau}{2 \pi r \varepsilon_{0}}$$
поле нити имеет цилиндрическую симметрию (рис.2).
Основой для нахождения напряжения будет формула:
$$U=\int_{r_{1}}^{r_{2}} \frac{\tau}{2 \pi r \varepsilon_{0}} d r=\frac{\tau}{2 \pi \varepsilon_{0}} \ln \left(\frac{r_{2}}{r_{1}}\right)=\frac{\tau}{2 \pi \varepsilon_{0}} \ln ?|2|$$
Ответ. $U=\frac{\tau}{2 \pi \varepsilon_{0}} \ln ?|2|$
Читать дальше: Формула работы.
Закон Ома — формулировка простыми словами, определение
Сопротивление
Представьте, что есть труба, в которую затолкали камни. Вода, которая протекает по этой трубе, станет течь медленнее, потому что у нее появилось сопротивление. Точно также будет происходить с электрическим током.
Сопротивление — физическая величина, которая показывает способность проводника пропускать электрический ток. Чем выше сопротивление, тем ниже эта способность.
Теперь сделаем «каменный участок» длиннее, то есть добавим еще камней. Воде будет еще сложнее течь.
Сделаем трубу шире, оставив количество камней тем же — воде полегчает, поток увеличится.
Теперь заменим шероховатые камни, которые мы набрали на стройке, на гладкие камушки из моря. Через них проходить тоже легче, а значит сопротивление уменьшается.
Электрический ток реагирует на эти параметры аналогичным образом: при удлинении проводника сопротивление увеличивается, при увеличении поперечного сечения (ширины) проводника сопротивление уменьшается, а если заменить материал — изменится в зависимости от материала.
Эту закономерность можно описать следующей формулой:
Сопротивление R = ρ · l/S R — сопротивление [Ом] l — длина проводника [м] S — площадь поперечного сечения [мм2] ρ — удельное сопротивление [Ом · мм2/м] |
Единица измерения сопротивления — ом. Названа в честь физика Георга Ома.
Будьте внимательны!
Площадь поперечного сечения проводника и удельное сопротивление содержат в своих единицах измерения мм2. В таблице удельное сопротивление всегда дается в такой размерности, да и тонкий проводник проще измерять в мм2. При умножении мм2 сокращаются и мы получаем величину в СИ.
Но это не отменяет того, что каждую задачу нужно проверять на то, что там мм2 в обеих величинах! Если это не так, то нужно свести не соответствующую величину к мм2.
Знайте!
СИ — международная система единиц. «Перевести в СИ» означает перевод всех величин в метры, килограммы, секунды и другие единицы измерения без приставок. Исключение составляет килограмм с приставкой «кило».
Удельное сопротивление проводника — это физическая величина, которая показывает способность материала пропускать электрический ток. Это табличная величина, она зависит только от материала.
Пятерка по физике у тебя в кармане!
Решай домашку по физике на изи. Подробные решения помогут разобраться в сложной теме и получить пятерку!
Таблица удельных сопротивлений различных материалов
Материал | Удельное сопротивление ρ, Ом · мм2/м |
Алюминий | 0,028 |
Бронза | 0,095–0,1 |
Висмут | 1,2 |
Вольфрам | 0,05 |
Железо | 0,1 |
Золото | 0,023 |
Иридий | 0,0474 |
Константан (сплав NiCu + Mn) | 0,5 |
Латунь | 0,025–0,108 |
Магний | 0,045 |
Манганин (сплав меди марганца и никеля — приборный) | 0,43–0,51 |
Медь | 0,0175 |
Молибден | 0,059 |
Нейзильбер (сплав меди, цинка и никеля) | 0,2 |
Натрий | 0,047 |
Никелин (сплав меди и никеля) | 0,42 |
Никель | 0,087 |
Нихром (сплав никеля, хрома, железа и марганца) | 1,05–1,4 |
Олово | 0,12 |
Платина | 0,107 |
Ртуть | 0,94 |
Свинец | 0,22 |
Серебро | 0,015 |
Сталь | 0,103–0,137 |
Титан | 0,6 |
Хромаль | 1,3–1,5 |
Цинк | 0,054 |
Чугун | 0,5–1,0 |
Резистор
Все реальные проводники имеют сопротивление, но его стараются сделать незначительным. В задачах вообще используют словосочетание «идеальный проводник», а значит лишают его сопротивления.
Из-за того, что проводник у нас «кругом-бегом-такой-идеальный», чаще всего за сопротивление в цепи отвечает резистор. Это устройство, которое нагружает цепь сопротивлением.
Вот так резистор изображается на схемах:
В школьном курсе физики используют европейское обозначение, поэтому запоминаем только его. Американское обозначение можно встретить, например, в программе Micro-Cap, в которой инженеры моделируют схемы.
Вот так резистор выглядит в естественной среде обитания:
Полосочки на нем показывают его сопротивление.
На сайте компании Ekits, которая занимается продажей электронных модулей, можно выбрать цвет резистора и узнать значение его сопротивления:
Источник: сайт компании Ekits
О том, зачем дополнительно нагружать сопротивлением цепь, мы поговорим в этой же статье чуть позже.
Реостат
Есть такие выключатели, которые крутишь, а они делают свет ярче-тусклее. В такой выключатель спрятан резистор с переменным сопротивлением — реостат.
Стрелка сверху — это ползунок. По сути, он отсекает ту часть резистора, которая находится от него справа. То есть, если мы двигаем ползунок вправо — мы увеличиваем длину резистора, а значит и сопротивление. И наоборот — двигаем влево и уменьшаем.
По формуле сопротивления это очень хорошо видно, так как длина проводника находится в числителе:
Сопротивление R = ρ · l/S R — сопротивление [Ом] l — длина проводника [м] S — площадь поперечного сечения [мм2] ρ — удельное сопротивление [Ом · мм2/м] |
Закон Ома для участка цепи
С камушками в трубе все понятно, но не только же от них зависит сила, с которой поток воды идет по трубе — от насоса, которым мы эту воду качаем, тоже зависит. Чем сильнее качаем, тем больше течение. В электрической цепи функцию насоса выполняет источник тока.
Например, источником может быть гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. В результате этих реакций выделяется энергия, которая потом передается электрической цепи.
У любого источника обязательно есть полюса — «плюс» и «минус». Полюса — это его крайние положения, по сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «−».
У нас уже есть две величины, от которых зависит электрический ток в цепи — напряжение и сопротивление. Кажется, пора объединять их в закон.
Сила тока в участке цепи прямо пропорциональна напряжению на его концах и обратно пропорциональна его сопротивлению.
Математически его можно описать вот так:
Закон Ома для участка цепи I = U/R I — сила тока [A] U — напряжение [В] R — сопротивление [Ом] |
Напряжение измеряется в Вольтах и показывает разницу между двумя точками цепи: от этой разницы зависит, насколько сильно будет течь ток — чем больше разница, тем выше напряжение и ток будет течь сильнее.
Сила тока измеряется в амперах, а подробнее о ней вы можете прочитать в нашей статье. 😇
Давайте решим несколько задач на закон Ома для участка цепи.
Задача раз
Найти силу тока в лампочке накаливания торшера, если его включили в сеть напряжением 220 В, а сопротивление нити накаливания равно 880 Ом.
Решение:
Возьмем закон Ома для участка цепи:
I = U/R
Подставим значения:
I = 220/880 = 0,25 А
Ответ: сила тока, проходящего через лампочку, равна 0,25 А
Давайте усложним задачу. И найдем силу тока, зная все параметры для вычисления сопротивления и напряжение.
Задача два
Найти силу тока в лампочке накаливания, если торшер включили в сеть напряжением 220 В, а длина нити накаливания равна 0,5 м, площадь поперечного сечения 0,01 мм2, а удельное сопротивление нити равно 1,05 Ом · мм2/м.
Решение:
Сначала найдем сопротивление проводника.
R = ρ · l/S
Площадь дана в мм2, а удельное сопротивления тоже содержит мм2 в размерности.
Это значит, что все величины уже даны в СИ и перевод не требуется:
R = 1,05 · 0,5/0,01 = 52,5 Ом
Теперь возьмем закон Ома для участка цепи:
I = U/R
Подставим значения:
I = 220/52,5 ≃ 4,2 А
Ответ: сила тока, проходящего через лампочку, приблизительно равна 4,2 А
А теперь совсем усложним! Определим материал, из которого изготовлена нить накаливания.
Задача три
Из какого материала изготовлена нить накаливания лампочки, если настольная лампа включена в сеть напряжением 220 В, длина нити равна 0,5 м, площадь ее поперечного сечения равна 0,01 мм2, а сила тока в цепи — 8,8 А
Решение:
Возьмем закон Ома для участка цепи и выразим из него сопротивление:
I = U/R
R = U/I
Подставим значения и найдем сопротивление нити:
R = 220/8,8 = 25 Ом
Теперь возьмем формулу сопротивления и выразим из нее удельное сопротивление материала:
R = ρ · l/S
ρ = RS/l
Подставим значения и получим:
ρ = 25 · 0,01/0,5 = 0,5 Ом · мм2/м
Обратимся к таблице удельных сопротивлений материалов, чтобы выяснить, из какого материала сделана эта нить накаливания.
Ответ: нить накаливания сделана из константана.
Закон Ома для полной цепи
Мы разобрались с законом Ома для участка цепи. А теперь давайте узнаем, что происходит, если цепь полная: у нее есть источник, проводники, резисторы и другие элементы.
В таком случае вводится закон Ома для полной цепи: сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.
Так, стоп. Слишком много незнакомых слов — разбираемся по порядку.
Что такое ЭДС и откуда она берется
ЭДС расшифровывается, как электродвижущая сила. Обозначается греческой буквой ε и измеряется, как и напряжение, в Вольтах.
ЭДС — это сила, которая движет заряженные частицы в цепи. Она берется из источника тока. Например, из батарейки.
Химическая реакция внутри гальванического элемента (это синоним батарейки) происходит с выделением энергии в электрическую цепь. Именно эта энергия заставляет частицы двигаться по проводнику.
Зачастую напряжение и ЭДС приравнивают и говорят, что это одно и то же. Формально, это не так, но при решении задач чаще всего и правда нет разницы, так как эти величины обе измеряются в Вольтах и определяют очень похожие по сути своей процессы.
В виде формулы Закон Ома для полной цепи будет выглядеть следующим образом:
Закон Ома для полной цепи I — сила тока [A] ε — ЭДС [В] R — сопротивление нагрузки [Ом] r — внутреннее сопротивление источника [Ом] |
Любой источник не идеален. В задачах это возможно («источник считать идеальным», вот эти вот фразочки), но в реальной жизни — точно нет. В связи с этим у источника есть внутреннее сопротивление, которое мешает протеканию тока.
Решим задачу на полную цепь.
Задачка
Найти силу тока в полной цепи, состоящей из одного резистора сопротивлением 3 Ом и источником с ЭДС равной 4 В и внутренним сопротивлением 1 Ом
Решение:
Возьмем закон Ома для полной цепи:
Подставим значения:
A
Ответ: сила тока в цепи равна 1 А.
Когда «сопротивление бесполезно»
Электрический ток — умный и хитрый парень. Если у него есть возможность обойти резистор и пойти по идеальному проводнику без сопротивления, он это сделает. При этом с резисторами просто разных номиналов это не сработает: он не пойдет просто через меньшее сопротивление, а распределится согласно закону Ома — больше тока пойдет туда, где сопротивление меньше, и наоборот.
А вот на рисунке ниже сопротивление цепи равно нулю, потому что ток через резистор не пойдет.
Ток идет по пути наименьшего сопротивления.
Теперь давайте посмотрим на закон Ома для участка цепи еще раз.
Закон Ома для участка цепи I = U/R I — сила тока [A] U — напряжение [В] R — сопротивление [Ом] |
Подставим сопротивление, равное 0. Получается, что знаменатель равен нулю, а на математике говорят, что на ноль делить нельзя. Но мы вам раскроем страшную тайну, только не говорите математикам: на ноль делить можно. Если совсем упрощать такое сложное вычисление (а именно потому что оно сложное, мы всегда говорим, что его нельзя производить), то получится бесконечность.
То есть:
I = U/0 = ∞
Такой случай называют коротким замыканием — когда величина силы тока настолько велика, что можно устремить ее к бесконечности. В таких ситуациях мы видим искру, бурю, безумие — и все ломается.
Это происходит, потому что две точки цепи имеют между собой напряжение (то есть между ними есть разница). Это как если вдоль реки неожиданно появляется водопад. Из-за этой разницы возникает искра, которую можно избежать, поставив в цепь резистор.
Именно во избежание коротких замыканий нужно дополнительное сопротивление в цепи.
Параллельное и последовательное соединение
Все это время речь шла о цепях с одним резистором. Рассмотрим, что происходит, если их больше.
Что такое закон Ома? | Fluke
Закон Ома — это формула, используемая для расчета соотношения между напряжением, током и сопротивлением в электрической цепи.
Для студентов, изучающих электронику, закон Ома (E = IR) так же важен, как уравнение относительности Эйнштейна (E = mc²) для физиков.
E = I x R
При расшифровке это означает напряжение = ток x сопротивление , или вольт = ампер x ом , или В = А x Ом .
Названный в честь немецкого физика Георга Ома (1789-1854), закон Ома касается ключевых величин, действующих в цепях: цепи

Если два из этих значений известны, технические специалисты могут изменить закон Ома для расчета третьего. Просто измените пирамиду следующим образом:
Если вы знаете напряжение (E) и силу тока (I) и хотите знать сопротивление (R), уменьшите X R в пирамиде и рассчитайте оставшееся уравнение (см. первое или последнее уравнение). слева, пирамида вверху).
Примечание: Сопротивление нельзя измерить в работающей цепи, поэтому закон Ома особенно полезен, когда его необходимо рассчитать. Вместо того, чтобы отключать цепь для измерения сопротивления, технический специалист может определить R, используя приведенный выше вариант закона Ома.
Теперь, если вы знаете напряжение (E) и сопротивление (R) и хотите узнать ток (I), вычеркните X из I и вычислите оставшиеся два символа (см. среднюю пирамиду выше).
А если вы знаете ток (I) и сопротивление (R) и хотите знать напряжение (E), умножьте нижние половины пирамиды (см. третью, или крайнюю правую, пирамиду вверху).
Попробуйте выполнить несколько расчетов на основе простой последовательной цепи, включающей только один источник напряжения (батарея) и сопротивление (свет). В каждом примере известны два значения. Используйте закон Ома, чтобы вычислить третий.
Пример 1: Напряжение (E) и сопротивление (R) известны.
Какой ток в цепи?
I = E/R = 12 В/6 Ом = 2 А
Пример 2: Напряжение (E) и ток (I) известны.
Какое сопротивление создает лампа?
R = E/I = 24 В/6 А = 4 Ом
Пример 3: Ток (I) и сопротивление (R) известны. Какое напряжение?
Какое напряжение в цепи?
E = I x R = (5A)(8Ω) = 40 В
Когда Ом опубликовал свою формулу в 1827 году, его ключевой вывод заключался в том, что количество электрического тока, протекающего через проводник, равно прямо пропорционально приложенному к нему напряжению. Другими словами, требуется один вольт давления, чтобы протолкнуть один ампер тока через сопротивление в один ом.
Что проверять с помощью закона Ома
Закон Ома можно использовать для проверки статических значений компонентов схемы, уровней тока, источников напряжения и падения напряжения. Если, например, контрольно-измерительный прибор обнаруживает измеренный ток выше нормального, это может означать, что сопротивление уменьшилось или напряжение увеличилось, что привело к возникновению ситуации с высоким напряжением. Это может указывать на проблему с питанием или цепью.
В цепях постоянного тока (постоянного тока) измерение тока ниже нормального может означать, что напряжение уменьшилось или сопротивление цепи увеличилось. Возможными причинами повышенного сопротивления являются плохие или ослабленные соединения, коррозия и/или поврежденные компоненты.
Нагрузки в цепи потребляют электрический ток. Нагрузками могут быть любые компоненты: небольшие электрические устройства, компьютеры, бытовая техника или большой двигатель. К большинству этих компонентов (нагрузок) прикреплена заводская табличка или информационная наклейка. Эти паспортные таблички содержат сертификаты безопасности и несколько идентификационных номеров.
Технические специалисты обращаются к паспортным табличкам на компонентах, чтобы узнать стандартные значения напряжения и силы тока. Если во время тестирования техники обнаруживают, что обычные значения не регистрируются на их цифровых мультиметрах или токоизмерительных клещах, они могут использовать закон Ома, чтобы определить, какая часть цепи дает сбой, и исходя из этого определить, в чем может заключаться проблема.
Основы науки о цепях
Цепи, как и вся материя, состоят из атомов. Атомы состоят из субатомных частиц:
- Протоны (с положительным электрическим зарядом)
- Нейтроны (бесзарядные)
- Электроны (отрицательно заряженные)
Атомы остаются связанными силами притяжения между ядром атома и электронами в его внешней оболочке. Под влиянием напряжения атомы в цепи начинают реформироваться, и их компоненты проявляют потенциал притяжения, известный как разность потенциалов. Взаимно притягивающиеся свободные электроны движутся навстречу протонам, создавая поток электронов (ток). Любой материал в цепи, который ограничивает этот поток, считается сопротивлением.
Ссылка: Принципы цифрового мультиметра Глена А. Мазура, American Technical Publishers.
Связанные статьи
- Устранение неполадок в неисправных двигателях с помощью проверки сопротивления изоляции
- Безопасность электрических испытаний – Подготовка к испытаниям без напряжения
Теория – Откуда берется U для напряжения?
спросил
Изменено 4 года, 10 месяцев назад
Просмотрено 39 тысяч раз
\$\начало группы\$
Я полагаю, что в Европе буква U обычно используется для обозначения напряжения в (например) законе Ома \$U = I × R \$. Кажется, я понимаю, откуда взялась буква V, обычно используемая в Северной Америке. Но что за история с U?
- теория
- закон Ома
\$\конечная группа\$
20
\$\начало группы\$
Лучшая причина, которую я слышал, состоит в том, чтобы избежать этого: -
В = 2 В (что, конечно же, означает «напряжение = 2 вольта»)
U = 2 В звучит более разумно, в конце концов, мы используем другой символ для тока (I), а также ампер. Напряжение немного само по себе - мы бы не сказали «ампер = 2 ампера» или «ток = 2 тока».
Мне кажется, это разумная причина для выбора U вместо V, но я никогда не использую "U"! Возможно я должен?
\$\конечная группа\$
7
\$\начало группы\$
Я нашел другое объяснение здесь:
Немцы взяли на себя смелость и стали называть напряжение «У», вероятно, потому, что эта буква почти не использовалась и ее нельзя было спутать ни с чем другим.
Они также придумали этимологию: U означает Unterschied, что в переводе с немецкого означает «различие»; очень подходит, так как напряжение, очевидно, такое же, как разность потенциалов.
Итак, U означает Unterschied (что означает «отличие»)
\$\конечная группа\$
2
\$\начало группы\$
Не отвечает откуда U но вот похожее обсуждение:
Q: символ напряжения u или v? В немецких учебниках по физике: I = U/R означает I[A] = U[V]/R[Ohm]. Похоже, что в английском языке вы бы написали: I[A] = V[V]/R[Ohm] Правильно или неправильно?
Мне понравились эти три комментария
Радослав Ю.
Доктор технических наук; Инженер по исследованиям и разработкам в области магнитной и силовой электроники, руководитель проекта Корпоративного исследовательского центра ABB PLОба обозначения напряжения «U» и «V» являются правильными, однако следует отметить, что в европейских обозначениях «U» описывает источник напряжения, а «V» скорее описывает потенциал напряжения.
Это означает, что U = V1 - V1 (напряжение есть разность потенциалов напряжения). Я согласен, что в IEEE и американских стандартах напряжение обозначается буквой «V».
Очень похожая ситуация и с другими электрическими символами (например, резисторами, конденсаторами, источниками тока и т. д.), где европейские и американские стандарты различаются.
Деян К.
Член Наблюдательного совета JP Energetika Maribor d.o.o.Исходя из опыта написания статей могу сделать следующие выводы: Для европейского научного пространства U и I – знаки среднего значения напряжения и тока соответственно, а u, i – знаки мгновенных значений напряжения и тока. U целесообразнее использовать, чтобы не смешивать параметр U с его значением в В (вольтах).
за л.
Я не знаю, являются ли стандарты США или IEEE или любые другие стандарты более правильными, чем другие региональные стандарты. Тем не менее, я научился использовать U для напряжения в школе, и лично я думаю, что U = 5 В имеет больше смысла, чем V = 5 В, но я гибкий
\$\конечная группа\$
1
\$\начало группы\$
Напряжение - это разница.
По-немецки «разница» звучит как « Unterschied ».
Логика состоит в том, что между двумя местами существует разница в количестве свободных электронов.
Электроны, которые могут двигаться, могут двигаться свободно. Если таких свободных электронов много, мы называем это «зарядом».
Аналогия: Представьте себе поезд с двумя вагонами, полными людей, скажем, 40 + 40. Если школьный класс (20 учеников) покинет один из вагонов, люди переместятся, чтобы использовать пустое пространство и равномерно распределиться по поезду.
Итак, напряжение говорит нам о разнице в количестве электронов, которые могут двигаться и равномерно распределяться между двумя местами.
Поскольку электричество восходит к Георгу Ому в Германии, объяснение подходит. К сожалению, слишком поздно спрашивать покойного мистера Ома, правда это или нет.
Но я заметил, что мои ученики находят это полезным.
В своем обучении я использую букву E для обозначения «нарастания напряжения», т. е. источника электронов, которые могут свободно двигаться (батарея, конденсатор), и U для обозначения «падения напряжения» (резисторы).
Это дает преимущество при анализе схем, так как теперь я могу сравнивать электрические цепи с вещами, с которыми мои ученики уже знакомы, например с водой, циркулирующей в фонтане, или даже с доходами и платежами.
\$\конечная группа\$
1
\$\начало группы\$
Некоторые немецкие учебники утверждают, что происхождение символа U неизвестно. Одно из возможных объяснений состоит в том, что оно происходит от латинского слова 9.0222 urgere что может означать
- нажать/сжать/сильно надавить/вниз
- толкать/толкать/толкать
- гусеница/траверса постоянно
\$\конечная группа\$
\$\начало группы\$
Использование V для напряжения было бы проблематичным при работе как с единицами измерения, так и с размерами.