Ручная дуговая наплавка


5.1. Ручная дуговая сварка (наплавка) покрытыми электродами

Ручная дуговая сварка выполняется плавящимся или неплавящимся (угольным, графитовым, вольфрамовым, гафниевым) электродом. При сварке плавящимся электродом (рис. 5.1) дуга горит между ним и изделием.

Рис. 5.1. Схема ручной дуговой сварки (наплавки) штучным электродом: 1– основной металл; 2 – сварочная ванна; 3 – электрическая дуга; 4 – проплавленный металл; 5 – наплавленный металл; 6 – шлаковая корка; 7 – жидкий шлак; 8 – электродное покрытие; 9 – металлический стержень электрода; 10 – электрододержатель

Формирование металла шва осуществляется за счет материала электрода и расплавления основного металла в зоне действия дуги. При сварке неплавящимся электродом для формирования металла шва в зону дуги извне подается присадочный материал.

Наибольшее применение нашла сварка плавящимся электродом, так как ее можно применять во всех пространственных положениях, сваривая черные, цветные металлы и различные сплавы. При этом используются электроды диаметром 1÷ 12 мм. Однако основной объем работ выполняется электродами диаметром 3÷ 6 мм.

Электроды классифицируются по материалу, из которого они изготовлены, по назначению, по виду покрытия, по свойствам металла шва, по допустимым пространственным положениям сварки или наплавки, по роду и полярности тока.

По назначению электроды подразделяются на следующие группы:

  • для сварки углеродистых и низколегированных конструкционных сталей – У;
  • для сварки теплоустойчивых легированных сталей – Т;
  • для сварки высоколегированных сталей с особыми свойствами – В;
  • для наплавки слоев с особыми свойствами – Н.

По толщине покрытия существуют следующие группы электродов:

  • с тонким покрытием – М;-
  • со средним покрытием – С;
  • с толстым покрытием – Д;
  • с особо толстым покрытием – Г.

Покрытия могут быть кислые – А, основные – В, целлюлозные – Ц, рутиловые – Р и прочие – П.

В настоящее время при ремонте техники на железнодорожном транспорте находят наибольшее применение кислые, основные и рутиловые покрытия.

Кислое покрытие состоит в основном из оксидов металла, алюмосиликатов и раскислителей. Газовая защита осуществляется за счет сгорания органических составляющих покрытия.

Сварку электродами с кислым покрытием можно производить при помощи постоянного и переменного тока. В процессе сварки сварочная ванна бурно кипит вследствие активного раскисления металла углеродом, что способствует хорошей дегазации металла шва. Поэтому даже при сварке по окалине или ржавчине получаются сравнительно плотные швы, уступающие по характеристикам пластичности и ударной вязкости металла шва электродам с другими видами покрытий. При использовании электродов с кислым покрытием существует склонность к образованию кристаллизационных трещин, большое разбрызгивание металла, значительное выделение в процессе сварки вредных марганцевых выделений. К электродам с кислым покрытием относятся электроды следующих марок: ОМА-2, ЦМ-7,ОММ-5 и др.

Основное покрытие состоит преимущественно из мрамора, плавикового шпата, раскислителей и легирующих элементов (ферромарганец, ферросилиций, феррованадий и др.). Газовая защита расплавленного металла обеспечивается углекислым газом и окисью углерода, которые образуются в результате диссоциации карбонатов.

Электроды с основным покрытием (УОНИ13/45, СМ-11, УОНИ13/55К, ВН-48, ОЗС- 33, ОЗС-25, ОЗС-18, УОНИ13/55У, УОНИ13/65, ВСОР-65У и ряд других) обеспечивают получение наплавленного металла с малым содержанием газов и вредных примесей, с высокими пластическими характеристиками и ударной вязкостью при нормальной и отрицательных температурах, с хорошей стойкостью против образования кристаллизационных трещин и старения. Поэтому такие электроды предназначаются для сварки конструкций из углеродистых и конструкционных сталей, жестких конструкций из литых углеродистых и низколегированных высокопрочных сталей.

Недостатком этого вида покрытий является повышенная чувствительность к порообразованию при увлажнении покрытия, увеличении длины дуги, при наличии окалины, ржавчины или масла на кромках свариваемых изделий.

Сварка электродами с основным покрытием ведется, как правило, на постоянном токе обратной полярности. Чтобы использовать такие электроды для сварки на переменном токе, в покрытие вводятся компоненты, содержащие легкоионизирующие элементы: калиевое жидкое стекло, кальцинированную соду, поташ и др.

Рутиловое покрытие содержит в основном рутиловый концентрат, различные алюмосиликаты и ферромарганец. Раскисление и легирование металла шва достигается наличием ферромарганца, а газовая защита – целлюлозой. Марки электродов с рутиловым покрытием: ОЗС-12, МР-3,ОЗС-6, ОЗС-4, АНО-4, ОЗС-32, ОЗС-21 и др.

Электроды с рутиловым покрытием обладают высокими сварочно-технологическими свойствами, обеспечивают хорошее формирование шва, имеют небольшое разбрызгивание, легкую отделимость шлаковой корки, малую склонность металла к образованию пор. Сварку можно вести как на постоянном, так и переменном токе.

В табл. 5.1 приведены некоторые характеристики электродов общего назначения наиболее распространенных в ремонтной практике для сварки и наплавки углеродистых и низколегированных конструкционных сталей.

Для получения при ручной дуговой наплавке слоев с высокими механическими свойствами (большая твердость, износостойкость, жаростойкость и другие) рекомендуется использовать электроды, приведенные в табл. 5.2.

Перед сваркой и наплавкой необходима прокалка электродов: с рутиловой обмазкой при t = 80 ÷120 ° С, с карбонато-рутиловым покрытием при t = 200÷250 ° С и с основным – при t = 300÷350 ° С. Время прокаливания 2÷2,5 часа.

Несмотря на широкое распространение ручной дуговой сварки при производстве сварочно-наплавочных работ, она имеет ряд недостатков: сравнительно низкое качество наплавленного металла по причине слабой защиты сварочной ванны от воздействия окружающей среды; большое колебание сварочного тока; значительную вероятность возникновения непроваров, подрезов и других дефектов соединения; большие потери (до 30%) присадочного материала на угар, разбрызгивание, огарки; малую производительность из-за невозможности использования высокой плотности тока и перерывов при смене электродов; сложность технологического процесса, что требует длительного времени подготовки сварщиков и др. Все это следует учитывать при выборе способа сварки и наплавки.

Таблица 5.1

Характеристики электродов общего назначения

Таблица 5.1

Характеристики наплавочных электродов

Технология дуговой наплавки металла

Восстановление поверхности изношенных деталей в ряде случаев является экономически обоснованным решением. Оборудование и технологии наплавки металлов сильно отличаются в зависимости от вида материала и требований к восстанавливаемой поверхности. Детальная информация собрана в статье.

СОДЕРЖАНИЕ

  • Виды и назначение наплавки металла
    • Ручная дуговая покрытыми электродами
    • Вибродуговая наплавка
    • Электрошлаковая
    • Плазменная
    • Электродуговая наплавка под флюсом
    • В защитной среде
    • Порошковой проволокой и лентой
    • Газовая
    • Лазерная
    • Электронно-лучевая
    • Электроконтактная
    • Взрывом
    • Индукционная
    • Электроискровая
  • Наплавка зубьев шестерни
  • Наплавка концов рельс
    • Ручное дуговое
    • Полуавтоматическое электродуговое
  • Наплавка цилиндров
    • Электродами с обмазкой
    • Автоматическая с флюсом
  • Наплавка плоскостей
  • Наплавка металлорежущего инструмента
  • Наплавка деталей, работающих с большим трением
  • Наплавка нержавеющей стали
  • Наплавка чугуна
  • Наплавка меди и бронзы
  • Наплавка алюминия и сплавов
  • Расход материалов
  • Оборудование
  • Услуги по наплавке

Детали механизмов и конструкций в процессе эксплуатации изнашиваются. В ряде случаев их намного дешевле и проще отремонтировать, нежели менять. Суть ремонта заключается в создании нового слоя на поверхности и создания прочной биметаллической структуры. Наплавка является одни из видов сварочных работ. Используется такой же оборудование и расходные материалы, как и при традиционной сварке. Только технология отличается нюансами.

Процедура не только восстанавливает изначальную геометрию и свойства изношенного элемента. Плюс к тому она придает дополнительные положительные характеристики. Это один из наиболее простых и эффективных способов восстановления работоспособности деталей. Наплавка решает широкий спектр задач:

  • возобновление геометрии детали;
  • придание конструкции совершенно иной новой формы;
  • повышение антикоррозийных свойств и износостойкости материала;
  • улучшение прочностных характеристик;
  • нанесения нового слоя с предопределенными химическими и физическими свойствами.

Наплавка – это способ нанесения металлического слоя на поверхность заготовки путем сварки плавлением. Принцип построен на физических диффузионных свойствах расплавленных металлов. Весь процесс протекает на молекулярном уровне, поэтому связь получается очень прочной. Чтобы соединить составы, поверхность основы разогревается до температуры плавления.

Одновременно до жидкого состояния плавится присадка. В результате слияния двух материалов получается однородный состав с высокими показателями прочности и надежности. Важным преимуществом метода является возможность регулировки толщины наплава и нанесения присадок на разнообразные по форме детали.

Виды и назначение наплавки металла

В наши дни на разных производственных участках применяется большое количество технологий и способов наплавки металлов. Выбор оптимального варианта зависит от условий производства, вида наплава и типа материала.

Ручная дуговая покрытыми электродами

Наплавка металла с помощью покрытых электродов является универсальным способом. Она может быть выполнена в любом пространственном положении. Технология применяется и на производстве, и в быту. Широкое ее распространение обусловлено простотой и удобством использования. Не требуется какого-то серьезного или специального оборудования. Из недостатков пользователи отмечают низкую производительность, нестабильность результата, сложные условия работы, большая глубина плавления основы.

Электрод для работы выбирается с учетом состава металла заготовки. Диаметр определяется в зависимости от толщины детали и ее формы. К примеру, если планируется наплавить металлическую поверхность толщиной 1,5 миллиметра, то подойдет стержень диаметром 3 мм. А если полка материала будет толще, то и электрод, соответственно, нужно взять другой – 4-6 мм.

Для улучшения качества и увеличения скорости работ, вы всегда можете воcпользоваться нашими верстаками собственного производства от компании VTM.

Перед наплавление поверхности нужно выполнить некоторые подготовительные работы. Прежде всего – очистить площадку от загрязнений. В зависимости от марки применяемых расходников определяется необходимость в подогреве заготовок. Наплавка металла выполняется постоянным током с обратной полярностью. Метод позволяет прибегнуть к различным схемам наплавочных швов. На плоских поверхностях используют два основных вида:

  1. наложение узких валиков. Они формируются один за другим с таким расчетом, чтобы последующий перекрывал предыдущий на 30-40% его ширины;
  2. наложение широких валиков. Они формируются за счет поперечных колебательных движений электродом.

Еще один вариант заключается в том, что узкие валики формируются на небольшом расстоянии. После этого сбивается шлак и окалина. Затем промежутки между валиками заплавляются.

Наплавка деталей с цилиндрическим профилем выполняется любым из трех приемов:

  • наложением ряда валиков по длине цилиндра;
  • формирование валиков по замкнутому кругу;
  • винтовые линии.

Поставщики и производители предлагают большой выбор наплавочных электродов. Самыми востребованными на отечественном рынке являются такие марки продукции:

  • ОЗН-6. Предназначены для работы с деталями разнообразного оборудования, работающих при высоких ударных нагрузках и подверженных интенсивной эксплуатации. Полученный с использованием таких электродов наплав характеризуется высокой устойчивостью к образованию микротрещин.
  • ОЗИ-5 разработаны для наплавки металлорежущего инструмента. Новообразованный металл устойчив к смятию, истиранию и выдерживает большие ударные нагрузки.

Кроме того, ручная дуговая наплавка может выполняться вольфрамовыми, графитовыми и угольными электродами. Но используется подобная методика редко из-за ограничений в использовании перечисленных расходных материалов.

Вибродуговая наплавка

Технология используется, если толщина наплавляемого покрытия не превышает 1 мм. Подразумевается, что нагрев основного слоя будет минимальным. Технология представляет собой прерывистый сварочный процесс, во время которого сварщик проделывает кончиком стержня продольные колебательные движения длиной до 3 мм. При колебательных движениях стержень соприкасается с металлом и происходит короткое замыкание. Металл детали и расходного материала плавятся.

В силу специфики нанесения наплава время «жизни» дуги составляет примерно пятую часть рабочего цикла, а количество наплавляемого металла невелико. Соответственно, основной металл прогревается на небольшую глубину и воздействие на него минимальное. То есть, исключено деформирование детали.

Вибродуговое наплавление выполняется полуавтоматической сваркой, которая дополнительно оснащена специальным механизмом прерывистой подачи расходного материала. Используется проволока диаметром 1,6-2 мм. Показатель силы тока может варьироваться в диапазоне 80-300А. к источнику питания подключаться следует с обратной полярностью. Наплавление выполняется в защитной среде.

Вибродуговой метод используется для наплавления наружных и внутренних поверхностей – как плоских, так и конических. Он отлично подходит для восстановления валов, бурильных замков, штоков насосов и других узлов.

Электрошлаковая

Метод основан на использовании тепловой энергии, которая образуется в результате прохождения тока через расплавленный шлак. То есть, источником нагрева наносимой присадки является шлаковая ванночка.

Приспособление представляет из себя емкость небольшого размера, предназначенную для удержания гранул и расплава. По мере выполнения работ она перемещается по базовой детали. Сверху подается гранулированная присадка или электрод. Они плавятся под слоем шлака и флюса. Благодаря тому, что шлаковая ванночка расположена вертикально, все пузырьки воздуха выдавливаются расплавом на поверхность. Это снижает количество пор внутри наплавляемого металла.

Шлак сохраняет тепло и препятствует разбрызгиванию металла, поэтому для технологии характерно сравнительно невысокое энергопотребление. Но основной ее особенностью является высокая производительность. Опытный специалист за час работы может наплавить сотни килограммов металла. Чтобы процесс протекал стабильно глубина шлаковой ванны должна быть больше 3 см. в противном случае высока вероятность неустойчивого протекания наплавления. Присадочным материалом могут служить разные электроды, пластины или прутки.

Достоинства:

  • Реакция носит устойчивый характер при большом диапазоне плотности тока – 0,2-300А;
  • За один проход можно наплавить толстый слой покрытия.
  • Метод приемлем для работы с материалами, склонными к образованию трещин.
  • Наплавляемому металлу несложно придать оптимальную форму.

Недостатки:

  • Возможет перегрев основного материала в месте термического воздействия из-за высокой инертности процесса.
  • Требуется приобретение дополнительного оборудования.
  • Получить тонкий слой очень сложно, а в большинстве случаев – нереально.
  • Подготовка занимает много времени.

Плазменная

Технология подразумевает использование специальных установок, называемых плазмотронами. Источником тепла служит высокотемпературная сжатая дуга – плазма, генерируемая в горелках специальной конструкции. Ее температура достигает нескольких десятков тысяч градусов. Присадочным материалом могут быть проволока, электрод, лента, порошок и т.п.

Технология отличается небольшой глубиной плавления основы. Структура наплава получается очень качественной, прочной и долговечной. С целью повышения производительности допускается подача в ванну сразу двух электродов.

Универсальный вариант наплавления – вдувание порошка в дугу. Выполнение такой работы требует использования комбинированной горелки. Она генерирует два типа дуги – прямую и косвенную. Порошок подается в рабочую зону с помощью сжатого воздуха. Проходя через зону высокой температуры, порошок плавится и оседает на поверхности детали в виде капель расплава.

Важно, чтобы рабочая поверхность была чистой и обезжиренной. Каждый последующий валик формируется таким образом, чтобы перекрывать около трети предыдущего.

Преимущества:

  • Наплавляемый слой получается высокого качества.
  • Глубина плавления основного материала небольшая.
  • Сцепление слоя с материалом детали получается очень прочным.
  • Формирование слоя малой толщины допускается.

Недостатки:

  • Требуется дополнительная оснастка.
  • Сравнительно невысокая производительность.

Электродуговая наплавка под флюсом

Технология отличается универсальностью применения и широкими возможностями легирования. Существует четыре вида наплавки под флюсом.

Электродуговая наплавка лентой. Сварщик перемещает дугу от одной кромки к другой. в результате тепловое воздействие носит рассеянный характер, а основной металл прогревается на небольшую глубину.

Многоэлектродная. Метод оригинален тем, что требуется одновременное использование более одного электрода. Они подключаются к общему источнику питания и располагаются на расстоянии один от другого. Электрическая дуга перемещается между ними, заставляя попеременно плавиться то один стержень, то другой.

Многодуговая. Техника в значительной степени похожа на предыдущую. С той лишь разницей, что число электрических дуг соответствует количеству электродов.

Вибродуговая наплавка под флюсом. Метод сводится к тому, что электродом необходимо выполнять колебательные движения.

Достоинства:

  • Высокая производительность.
  • Универсальность использования.
  • Небольшой расход электрода.
  • Отсутствие вредного излучения.

Недостатки:

  • Основной материал плавится на большую глубину.
  • Требуется использование формирующих флюс устройств.
  • Работать можно исключительно в нижнем пространственном положении.
  • Трудно удаляется шлак с деталей малого размера и глубокими внутренними поверхностями.

В защитной среде

Самый востребованный способ наплавки. Выполняется с использованием плавящихся электродов в среде углекислого газа. Отличается невысокой стоимостью и доступностью. Позволяет наплавлять заготовки и детали малых размеров и наносить слои толщиной от 0,5 до 3,5 миллиметров.

Работы могут выполняться и плавящимися, и неплавящимися электродами. В первом варианте электрическая дуга образуется между расходным материалом и поверхностью заготовки. Работа выполняется автоматом или полуавтоматом. Нужно обеспечить автоматическую подачу проволоки в рабочую зону. Кроме углекислого газа для формирования защитной оболочки можно использовать смесь на основе аргона.

Второй вариант подразумевает применение угольных, вольфрамовых или графитовых неплавящихся электродов. Присадочным материалом служит проволока или порошок. При работе угольным прутком присадка в виде порошка насыпается на поверхность, а затем подвергается термической обработке. В наплавленном слое образуется большое количество пор, появляются сторонние включения и прочие дефекты. Поэтому о высоком качестве в этом случае речь не идет.

Порошковой проволокой и лентой

Защитная среда для данной технологии не требуется. Рабочая зона защищается за счет компонентов сердечника электрода. Основные достоинства метода заключаются в простоте и высокой маневренности. Можно работать с деталями любой конфигурации, в том числе и сложной геометрической формы: углубления с малым диаметром, выступы, обратные углы и т.д.

Газовая

Считается самым простым, доступным и удобным способом наплавки металлов. Тепло для плавления металлов вырабатывается за счет сжигания газовой смеси в специальной горелке. Для наплавки можно использовать стержни, проволоку или пруток. Они подаются в рабочую зону вручную или посредством механизмов. В качестве флюсов применяются смеси, выполненные на основе буры или борной кислоты. Сам процесс аналогичен электродуговой наплавке.

Наплавление небольших деталей осуществляется без предварительного нагрева. Крупные заготовки перед началом работы следует разогреть до температуры в 500 или больше градусов Цельсия.

В наши дни становится все более популярной становится газопорошковая наплавка. Метод дает возможность реконструировать поверхность деталей сложной конфигурации. При этом толщина слоя при необходимости может составлять 0,1-0,3 мм, а основной металл не разбавляется. В рабочую зону порошок поступает через газокислородное пламя. По ходу движения он нагревается и к поверхности уже доходит в расплавленном состоянии. После остывания образуется наплавленный слой.

Преимущества:

  • Основной металл проплавляется на незначительную глубину.
  • Технология универсальна.
  • Можно наносить очень тонкий слой.

Недостатки:

  • Качество наплавляемого слоя нестабильно.
  • Плохая производительность.
  • Коэффициент использования присадок низкий.

Лазерная

Главным элементом системы является концентрированный пучок энергии – лазерный луч. Вакуумные камеры для эксплуатации оборудования не нужны. Принцип работы построен точно так же, как и у газоплазменных или порошковых плазменных установок. Так же требуется бесперебойная подача присадочного порошкового материала и его соединение с металлом и флюсом. Отличие состоит в способе плавления металлов. Здесь это происходит за счет фокусировки лазерного луча.

Основными узлами оборудования являются специальная головка с соплом, внутри которого лазером нагревается поток газа, и порошковый инжектор, подающий в этот поток присадочный материал.

Преимущества:

  • Отличное сцепление между основным металлом и наплавом.
  • Поверхность детали прогревается на малую глубину. Этот показатель контролируется.
  • Можно наносить тонкие слои – до 3 мм.
  • Минимальная деформация поверхности деталей.
  • Можно нанести слой металла в труднодоступных местах.
  • Можно лазерным лучом воздействовать сразу на несколько мест.

Недостатки:

  • Невысокая производительность.
  • Высокие затраты энергии.
  • Оборудование обходится дорого.

Электронно-лучевая

Материалы плавятся в вакууме под воздействием электронного луча. Технология позволяет регулировать нагрев и основного материала, и присадки. Важно подчеркнуть, что осуществляется контроль раздельно, что позволяет избежать смешивания двух расплавов. В качестве присадки можно использовать привычную проволоку или порошок.

Преимущества:

  • Небольшая глубина проплавления.
  • Можно нанести слой небольшой толщины.

Недостатки:

  • Высокая стоимость оборудования.
  • Исполнителю требуется биологическая защита.

Электроконтактная

Для выполнения работы требуется специальный аппарат. Наплавление выполняется с использованием проволоки или порошка.

Преимущества:

  • Небольшие затраты энергии.
  • Высокая производительность труда.
  • Защитная среда не нужна.
  • Импульс имеет небольшую продолжительность, что минимизирует зону термического воздействия.

Из недостатков нужно подчеркнуть небольшой ассортимент обрабатываемой продукции. технология используется для восстановления штоков, осей, валов и прочих узлов, износ которых не больше 1,5 миллиметра по диаметру.

Взрывом

В основу процесса положена технология сваривания металлов методом взрыва.

Преимущества:

  • Можно работать с металлами, сплавить которые в иных условиях невозможно.
  • Основной металл на проплавляется.
  • Изделия подвергаются незначительной деформации.

Недостатки:

  • Требуются специальные полигоны.
  • Подготовка занимает много времени.
  • Номенклатура обрабатываемых деталей сильно ограничена.

Индукционная

Способ основан на использовании энергии вихревых потоков. На рабочую поверхность заготовки они наводятся посредством высокочастотных полей.

Перед началом процесса на заготовку наносится слой присадки и флюса. После этого на расстоянии над ним устанавливается индуктор. Устройство представляет собой спираль из нескольких витков медной шины или трубки. На них подается напряжение высокой частоты.

Глубина плавления основного металла зависит от частоты индуктора. Зависимость носит обратный характер: чем выше частота, тем меньше глубина плавления металла. Данная технология характеризуется высокой производительностью и малой глубиной нагрева заготовки.

Электроискровая

Один из методов электроэрозионной обработки, в основе которого лежит использование кратковременных разрядов. Электрические импульсы воздействуют на поверхность обрабатываемой детали.

Основными узлами установки являются электрод и электромагнитный осциллятор. Наконечник в процессе воздействия электрических разрядов отторгает частички металла. Поскольку электрод подключен к положительному заряду, а деталь – к отрицательному, то металл направляется к поверхности заготовки.

Данный метод подходит для нанесения тонких покрытий – от нескольких микрон до 1,5 мм. Наплав получается очень плотным и мелкопористым. Впоследствии он хорошо удерживает на своей поверхности смазочные материалы.

Главное достоинство технологии заключается в том, что обрабатываемая поверхность практически не нагревается. Как результат структура материала не изменяется, а поверхность заготовки не деформируется.

Наплавка зубьев шестерни

Механизмы шестеренчатых передач используются в самых разных машинах и устройствах. Они испытывают большие механические нагрузки, из-за чего изнашиваются зубья: стают тоньше, короче; выкрашиваются; получают трещины, царапины и другие дефекты. Самым эффективным методом восстановления шестерен является наплавка.

Если шестерня механизма обычного порядка потеряла не больше двух зубов подряд, то она подлежит ремонту. Зубья с дефектами или их остатки удаляют полностью. На освободившемся месте по ширине сверлят два или три отверстия и нарезают в них резьбу. Затем в подготовленные отверстия вкручиваются шпильки так, чтобы они выступали над поверхностью. Затем на шпильки наваривается металл. Наплаву придается форма утерянного зуба.

Для восстановления зубьев шестерен также используются специальные предназначенный для наплавки электроды. Для того, чтобы зуб вышел нужного размера, применяется выполненный из меди шаблон. Готовится он по целым зубьям.

Если приходится ремонтировать шестеренку с несколькими дефективными зубьями, то восстанавливается поношенная часть зацепа. С этой целью применяется сплав сормайт. Наплавка выполняется электродуговым (электроды ЦС-1 и ЦС-2) или газовым методом. Для работы подходит постоянный или переменный источник тока обратной полярности. После этого места ремонта шлифуют.

Помимо электродов для наплавки может использоваться сталинит, представляющий собой порошок. Плавится он угольными или стальными стержнями только постоянным током с обратной полярностью. Пластичная смесь наносится на заготовку слоем в 3-4 миллиметра. Флюсом служит бура.

Ремонт зубьев с дефектами длиной от 2,2 до 8,2 миллиметров выполняется отдельно для каждого изношенного зуба. Работа выполняется под флюсом порошковой проволокой. Расплав формируется в форме, сделанной из меди.

Наплавка концов рельс

Развивать большую скорость и при это оставаться безопасным видом транспорта поезда могут только на рельсах, поддерживаемых в хорошем состоянии. Наибольшие нагрузки испытывают стыки. На них приходятся удары колес движущегося состава. Рано или поздно это приводит к деформации рельсов на краях. Стандартным способом восстановления геометрии путепроводов является наплавка.

Изначально с рельса болгаркой, зубилом либо иным инструментом снимается отслоившийся и расплющенный металл. После этого концы рельс нагреваются, чтобы процесс прошел быстрее, а металлы лучше соединились. Существует несколько технологий наплавки рельсов.

Ручное дуговое

Выполняется электродами К-2-55, ОЗН-300, ОЗН-350 путем формирования валиков вдоль, поперек или по диагонали торца. Наиболее результативным является второй способ. В среднем ширина валика составляет 2-3 см. точные размеры зависят от диаметра расходника и настроек сварочного аппарата.

Можно наплавлять металл пучком, состоящим из нескольких электродов, расположенных в один ряд. В таком случае производительность труда кратно возрастает. Начинается наплавка с торца рельса. Дуга разжигается с внутренней части. Для этого нужно немного отступить от края и начать формировать валик. Оборвать его нужно за несколько миллиметров от края торца. После этого начинаются работы по заделыванию проемов между валиками с таким расчетом, чтобы перекрывалось примерно 15-20% толщины предыдущего валика. По окончанию наплавки торец шлифуется.

Полуавтоматическое электродуговое

Присадочный материал – порошковая самозащитная проволока. Сравнительно с предыдущим способом полуавтомат обладает важными преимуществами: значительно выше производительность труда и качество наплава. Процесс делится на этапы:

  • определение размера дефекта;
  • подготовка оборудования и оснастки;
  • шлифовка места;
  • определение границ выездных работ и установка полуавтомата на рельсы;
  • предварительный нагрев места работ;
  • наплавление металла;
  • окончательная обработка абразивным инструментом.

Если дефект глубокий, то процесс повторяется несколько раз.

Наплавка цилиндров

Восстановление деталей цилиндрической формы выполняется одним из двух приемов.

Электродами с обмазкой

Делается одним из трех способов:

  • наложением валиков по длине цилиндра;
  • формированием наплава по окружности;
  • по винтовой линии.

Метод выбирается в зависимости от условий. К примеру, длинные заготовки обрабатываются первым способом. Поверхность очищают и наносят первый вали. Второй формируется с противоположной стороны. Третий и четвертый делаются накрест и получается, что все они располагаются через равные отрезки. Теперь наплавы очищаются от шлака и последующие валики наносятся рядом с существующими с таким расчетом, чтобы они частично перекрывались друг другом. Важно обратить внимание на то, что каждый последующий валик наносится только после того, как предыдущий очищен от шлака.

Работа вторым методом проводится с деталью, которая непрерывно вращается вокруг собственной оси. Последний способ отлично подходит для механизированной обработки. Деталь вращается непрерывно и равномерно.

Автоматическая с флюсом

Получается устойчивый к износу слой. Выполняется сварочной или порошковой проволокой. Также можно применить ленточный электрод или порошковую ленту. Наплав формируется по винтовой или образующей линии.

Наплавка плоскостей

Выполняется посредством формирования большого количества валиков. Каждый последующий должен перекрывать предыдущий примерно на 30% его ширины. Шлак удаляется сразу после окончания формирования каждого из валиков.

Самым простым методом является укладка узких валиков на небольшом расстоянии один от другого. Промежутки между ними заполняются в последнюю очередь. Более совершенным способом стала широкослойная наплавка. Формируется за счет небольших колебательных движений кончика электрода.

Когда требуется высокая производительность, то лучше прибегнуть к применению электродной ленты или многоэлектродной наплавки. Наиболее износостойким покрытие получается, если использовать порошковую проволоку и выполнять работу открытой дугой. Кончику расходного материала необходимо придать колебательные движения с нужной амплитудой.

Наплавка металлорежущего инструмента

Ремонт штампов и режущего инструмента производится одним из трех способов – сваркой полуавтоматической, автоматической или ручной. В последнем варианте используется электроды марок ЦИ-1М, ЦС-1 или ОЗИ-3(5, 6).

Полученный в результате такой технологии слой обладает отличной сопротивляемостью на истирание. Перед началом работы поверхность заготовки нужно прогреть до температуры 300-700 градусов Цельсия. Наплавка делается за 1-3 прохода, а толщина слоя составляет 2-6 миллиметров.

Наплавка деталей, работающих с большим трением

Узлы, работающие в условиях интенсивной эксплуатации, подвержены быстрому износу. В большинстве своем он связан с трением или частыми ударами. Такие изъяны следует наплавлять такими электродами:

  • ОМГ-Н. использовать можно с источником постоянного или переменного тока. Подключение – обратная полярность.
  • ЦНИИН-4. Одна из наиболее ходовых марок. Универсальна в применении.
  • ОЗН-7Н. Поверхность наплавляется в несколько проходов. Полученный слой устойчив к истиранию и образованию трещин.
  • ОЗН-400М. технология отличается высокой производительностью, а наплав – устойчивостью к механическим нагрузкам.
  • ОЗН-300М. Хорошие характеристики твердости и механической прочности. работы выполняются на обратной полярности от источника постоянного или переменного тока.

Наплавка узлов, которые не подвергаются ударам, применяются электроды Т-590 и Т-620. Данные расходники специально разработаны для восстановления деталей, работающих в условиях интенсивной эксплуатации. В состав электродов входят добавки, придающие наплаву высокой твердости, которая составляет 62-64 HRC. С другой стороны, наплав отличается хрупкостью и склонностью к образованию трещин. Поэтому электроды нельзя использовать для ремонта деталей, подверженных ударным нагрузкам. Поверхность обрабатывается в один или два приема.

Наплавка нержавеющей стали

Наиболее часто детали из нержавеющей стали восстанавливаются наплавкой с использованием электродов ЦН-12М-67 и ЦН-6Л. Их стержень выполнен из нержавеющей высоколегированной проволоки. Полученный слой наплава обладает такими показателями:

  • устойчивость к коррозии;
  • устойчивость к образованию задиров.

Расходные материалы часто применяются для наплава арматуры. Перед началом работ поверхность деталей следует нагреть до температуры 300-600 градусов Цельсия. Дальнейший режим обработки зависит от типа материалов.

Наплавка чугуна

Для работы с чугуном и его сплавами используются электроды следующих марок:

  • ОЗЧ-2. Наплавляются заготовки, сделанные из серого и ковкого чугуна.
  • МНЧ-2. Наплав характеризуется высокой плотностью и чистотой состава.
  • ОЗЖН-1 и 2. Предназначены для работы по серому и высокопрочному чугуну.
  • ЦЧ-4. Расходники отличаются высокими показателями использования: стабильная дуга, простота розжига, небольшое количество брызг.

Есть универсальные марки расходных материалов, которые можно использовать для наплавки деталей из разных марок чугуна, но большинство ориентированы на конкретные виды материала.

Наплавка меди и бронзы

Для работы с технической медью лучше других подходят электроды Комсомолец-100. Можно так же использовать присадочные притки, сопоставимые по составу с основным материалом. Предварительно поверхность детали следует нагреть до температуры 300-500 градусов Цельсия. В случаях, когда для наплава пришлось поднять температуру выше 500 градусов, нанесенный слой необходимо проковать.

Для бронзы больше подходят электроды ОЗБ-2М. они позволяют сформировать слой, устойчивый к износу. Для работы потребуется источник постоянного тока с обратно полярным подключением. Выполнять наплавку следует только в нижнем пространственном положении.

Наплавка алюминия и сплавов

Оптимальным методом является дуговая наплавка. Для выполнения работ используются расходники следующих марок:

  • ОЗА-1. Новый слой будет обладать высокой устойчивостью к коррозии.
  • ОЗАНА-1. Разрушает защитную пленку из оксида алюминия и помогает стабилизировать рабочий процесс.

Чтобы иметь возможность регулировать структурный состав наплава, нужно использовать электроды порошковые. Они дают возможность специалистам создавать слой наплава, который по своим эксплуатационным показателям будет превосходить основной металл.

Расход материалов

Точный расчет расхода наплавочного материала необходим для определения стоимости готового изделия. Помимо этого, расчет расходных материалов необходим для обеспечения непрерывности рабочего процесса и создания необходимого запаса расходников. Помогут в этом нормативы, составленные для каждого вида работ.

Вес принято рассчитывать на метр сварного шва. Для определения массы наплава следует воспользоваться формулой:

G = F * y * L.

Здесь: F – площадь сечения в поперечном разрезе;

L – длина шва;

Y – удельный вес металла.

Определение количества электродов тоже относится к числу важных для организации работы параметров. Но вычислять значение нет необходимости. На упаковке каждой марки электродов указывается необходимый вес стержней для наплавки килограмма металла. В среднем показатель варьируется в пределах 1,4-1,8 кг.

Рассчитывать количество электродов для формирования погонного метра шва тоже не нужно. Эту цифру можно взять из ГОСТа, где для каждой формы сварного шва из низколегированной и углеродистой стали указано усредненное значение параметра.

Оборудование

Оборудование, используемое для наплавки металлов, работает по тем же принципам и от таких же источников питания, что и привычная сварка. Отличительной его особенностью является наличие вспомогательной оснастки. Она подачу и распределение присадочных материалов на поверхности наплавляемых деталей.

Другими словами, для наращивания рабочей поверхности узлов применяется сварочное оборудование, укомплектованное дополнительными узлами. Специально изготовленное для наплавки оборудование классифицируется в зависимости от формы наплавляемых элементов: для плоских поверхностей, вращающихся деталей и сложных конфигураций.

Присадочные материалы наносятся как традиционными способами (пруток, проволока, порошок), так и по специальной технологии – центробежное распределение, спиральная укладка и другие. Установки, предназначенные для работы с крупногабаритными заготовками, комплектуются узлами предварительного нагрева поверхности, способными нагревать металлы до температуры 500-700 градусов Цельсия.

На потребительском рынке распространены малогабаритные установки для электроискровой наплавки. Они могут быть использованы в домашней обстановке. Согласно аннотации, с помощью такого оборудования можно наплавлять рабочие поверхности толщиной до нескольких миллиметров. На практике за один проход удается добавить десятую часть миллиметра. Поэтому область применения таких установок сильно ограничена.

Услуги по наплавке

Компании, занятые в области обработки металлов, предлагают услуги по наплавке. В распоряжении они имеют мощные профессиональные установки высокой производительности и опытных сотрудников. Поэтому, если требуется качественный наплав и решить задачу самостоятельно не представляется возможным, то лучше обратиться за помощью к специалистам. В конечном итоге, такое решение экономит и время, и финансы.

Ручная дуговая сварка металлическим электродом (MMA, SMAW или сварка электродом)

Ручная дуговая сварка металлическим электродом была впервые изобретена в России в 1888 году. Она включала стержень из чистого металла без флюсового покрытия для создания защитной газовой защиты. Электроды с покрытием не разрабатывались до начала 1900-х годов, когда в Швеции был изобретен процесс Кьельберга, а в Великобритании был введен квазидуговой метод. Стоит отметить, что электроды с покрытием медленно внедрялись из-за их высокой стоимости. Однако было неизбежно, что по мере роста спроса на качественные сварные швы ручная дуга по металлу стала синонимом электродов с покрытием. Когда дуга зажигается между металлическим стержнем (электродом) и заготовкой, и стержень, и поверхность заготовки плавятся, образуя сварочную ванну из расплавленного металла. Одновременное расплавление флюсового покрытия на стержне приводит к образованию газа и шлака, которые защищают сварочную ванну от окружающей атмосферы. Шлак затвердеет и остынет, и его необходимо срезать с валика сварного шва после завершения сварки (или перед наплавкой следующего прохода).

Этот процесс позволяет производить только короткие сварные швы до того, как потребуется вставить новый электрод в держатель сварочного электрода. Проплавление низкое, а качество готового наплавленного металла в значительной степени зависит от навыков сварщика.

Типы флюсов/электродов

Чтобы зажечь дугу между электродом и основным металлом, например, углеродистой сталью, и получить сварной шов хорошего качества, сварщики должны убедиться, что их сварочные аппараты оснащены подходящими электродами. Стабильность дуги, глубина проплавления, скорость осаждения металла и позиционные возможности в значительной степени зависят от химического состава флюсового покрытия на электроде. Электроды можно разделить на три основные группы:

  • Целлюлозный
  • Рутил
  • Базовый

Целлюлозные электроды содержат большое количество целлюлозы в покрытии и характеризуются глубоко проникающей дугой и высокой скоростью выгорания, что обеспечивает высокую скорость сварки. Сварочный нагар может быть грубым, а с жидким шлаком удаление шлака может быть затруднено. Эти электроды просты в использовании в любом положении и известны тем, что используются в технике сварки «дымоход».

Характеристики:

  • глубокое проникновение во всех положениях
  • пригодность для вертикальной сварки вниз
  • достаточно хорошие механические свойства
  • высокий уровень образования водорода - риск растрескивания в зоне термического влияния (ЗТВ)

Рутиловые электроды содержат большое количество оксида титана (рутила) в покрытии. Оксид титана способствует легкому зажиганию дуги, плавной работе дуги и малому разбрызгиванию. Эти электроды являются электродами общего назначения с хорошими сварочными свойствами. Их можно использовать с источниками переменного и постоянного тока и во всех положениях. Электроды особенно подходят для сварки угловых соединений в горизонтальном/вертикальном (Г/В) положении.

Особенности:

  • умеренные механические свойства металла сварного шва, такие как предел прочности при растяжении
  • хороший профиль борта из вязкого шлака
  • Возможна позиционная сварка с жидким шлаком (содержащим фторид)
  • легко удаляемый шлак

Основные электроды содержат большое количество карбоната кальция (известняк) и фторида кальция (плавиковый шпат) в покрытии. Это делает их шлаковое покрытие более текучим, чем рутиловое покрытие - оно также является быстрозастывающим, что облегчает сварку в вертикальном и потолочном положении. Эти электроды используются для сварки изделий среднего и большого сечения, где требуется более высокое качество сварного шва, хорошие механические свойства и устойчивость к растрескиванию (за счет высокой жесткости).

Особенности:

  • Наплавленный металл с низким содержанием водорода
  • требует высоких сварочных токов/скоростей
  • плохой профиль борта (выпуклый и грубый профиль поверхности)
  • удаление шлака затруднено

Металлические порошковые электроды содержат добавку металлического порошка к флюсовому покрытию для увеличения максимально допустимого уровня сварочного тока. Таким образом, для данного размера электрода скорость осаждения металла и эффективность (процент осажденного металла) увеличиваются по сравнению с электродом, не содержащим порошка железа в покрытии. Шлак обычно легко удаляется. Электроды из железного порошка в основном используются в горизонтальном и вертикальном положениях, чтобы воспользоваться преимуществами более высокой скорости осаждения. Эффективность от 130 до 140% может быть достигнута для рутиловых и основных электродов без заметного ухудшения характеристик дуги, но дуга имеет тенденцию быть менее сильной, что снижает проникновение валика.

Источник питания

Электроды могут работать от источников переменного и постоянного тока. Не все электроды постоянного тока могут работать от источников переменного тока, однако электроды переменного тока могут использоваться как от переменного, так и от постоянного тока.

Сварочный ток

Уровень сварочного тока определяется размером электрода - производители рекомендуют нормальный рабочий диапазон и силу тока. Типичные рабочие диапазоны для выбора размеров электродов показаны в таблице. Как правило, при выборе подходящего уровня тока электроду требуется около 40 А на миллиметр (диаметр). Таким образом, предпочтительный уровень тока для электрода диаметром 4 мм составляет 160 А, но допустимый рабочий диапазон составляет от 140 до 180 А.

Что нового

Транзисторная (инверторная) технология теперь позволяет производить очень маленькие и сравнительно легкие источники питания. Эти источники питания находят все более широкое применение для сварки на стройплощадке, где их можно легко транспортировать с работы на работу. Поскольку они имеют электронное управление, для сварки TIG и MIG доступны дополнительные устройства, которые повышают гибкость. Электроды теперь доступны в герметичных контейнерах. Эти вакуумные пакеты избавляют от необходимости запекать электроды непосредственно перед использованием. Однако, если контейнер был открыт или поврежден, важно, чтобы электроды были повторно высушены в соответствии с инструкциями производителя.

Обучение

Школа обучения TWI предлагает ознакомительный курс по сварке ММА. Сюда входят теоретические и практические занятия, примерно 75% из которых — демонстрации и практические занятия; понимание процессов сварки и фундаментальные базовые знания. Здоровье и безопасность, настройка оборудования, параметры процесса сварки, технологические дефекты и способы их предотвращения, сварочные материалы.

Для получения дополнительной информации нажмите здесь.

Справки

Для получения дополнительной информации о сварке ММА и технических вопросов, пожалуйста, свяжитесь с нами.

Что такое ручная дуговая сварка?

Welding Tech

Ручная дуговая сварка — это процесс сварки, при котором рука оператора контролирует скорость перемещения и скорость подачи электрода в дугу. Это дает оператору больший контроль над сваркой, что делает его идеальным для применений, где требуется точная сварка.

Одним из основных преимуществ ручной дуговой сварки является то, что это, как правило, более доступный процесс сварки, чем другие методы, такие как автоматическая или роботизированная сварка. Это делает его идеальным выбором для небольших магазинов и предприятий, у которых может не быть бюджета на более дорогое оборудование.

Несмотря на свои преимущества, ручная дуговая сварка имеет некоторые недостатки. Одним из самых больших недостатков является то, что с помощью этого метода может быть труднее производить согласованные сварные швы. Это связано с тем, что оператор должен контролировать как скорость перемещения, так и скорость подачи, что может быть затруднительно для поддержания постоянной скорости для обоих.

Кроме того, ручная дуговая сварка может требовать больших физических усилий, чем другие методы, поскольку оператору приходится удерживать электрод и горелку на месте в течение всего времени сварки. Это может привести к усталости, особенно при длительной сварке.

В целом ручная дуговая сварка является универсальным и доступным сварочным процессом, который можно использовать в самых разных областях. Хотя у него есть некоторые недостатки, его преимущества делают его популярным выбором для многих сварщиков.

Для чего используется ручная дуговая сварка?

Ручная дуговая сварка может использоваться для различных материалов, включая такие металлы, как сталь, алюминий и нержавеющая сталь. Также можно сваривать неметаллические материалы, такие как пластмассы и композиты, с помощью ручной дуговой сварки, хотя это менее распространено.

Что такое ручная дуговая сварка металлом?

Процесс ручной дуговой сварки металлическим электродом (MMAW) является наиболее распространенным типом ручной сварки. Он предполагает использование электрода, покрытого флюсом, который помогает защитить сварочную ванну от загрязнения.

Процесс MMAW подходит для широкого спектра материалов и может использоваться во всех положениях, что делает его универсальным выбором для многих применений. Тем не менее, с помощью этого метода может быть труднее производить однородные сварные швы, так как оператор должен контролировать как скорость перемещения, так и скорость подачи.

Какие существуют 4 типа дуговой сварки?

Существует четыре основных типа дуговой сварки: ручная дуговая сварка металлическим электродом (MMAW), дуговая сварка металлическим электродом в среде защитного газа (GMAW), дуговая сварка с флюсовой проволокой (FCAW) и дуговая сварка вольфрамовым электродом в среде защитного газа (GTAW).


Learn more