Сигма текучести


Предел текучести стали: на что влияет

Вопросы, рассмотренные в материале:

  • Что такое предел текучести стали
  • Практическое значение предела текучести стали
  • Влияние различных добавок на предел текучести стали
  • Значение предела текучести стали по ГОСТу
  • Проверка сплава на предел текучести

Что такое предел текучести стали

Различные марки стали широко применяются в большинстве областей современной промышленности. Стальные сплавы имеют высокие эксплуатационные характеристики, которые делают их востребованным материалом в строительстве, в машино- и станкостроении, в производстве самых разных механизмов, инструментов, медицинского оборудования и т. д.

На стадии проектирования специалистам необходимо принимать в расчет целый ряд важных характеристик металла, одной из которых является предел его текучести.

Конструктору-проектировщику необходимо подбирать сплав, исходя из его механических свойств. Предел текучести стали – это напряжение, при котором деформации нарастают без увеличения прилагаемой нагрузки. Соответственно, чем меньше это значение, тем хуже прочностные характеристики металла и ниже нагрузки, при которых допустима эксплуатация изделий.

При проектировании элементов конструкций и деталей для различных сооружений и механизмов инженерам необходимо исключить возможность серьезных изменений и разрушения. В ходе создания проекта обязательно учитывается, какой предел текучести стали допустим для деталей данного агрегата, так как от этого зависит, помимо эксплуатационных качеств, безопасность людей.

Предел текучести конструкционной стали позволяет судить о допустимых нагрузках для конкретных материалов и изготовленных из них деталей механизмов или элементов конструкций. Проще говоря, это максимальная нагрузка для:

  • зданий;
  • сооружений;
  • деталей и узлов механизмов.

Изначально этот параметр определяли эмпирическим путем. Только в XIX веке учеными были заложены основы сопромата – науки о прочности и надежности деталей механизмов и конструкций.

Развитие ядерной физики в начале прошлого столетия сделало возможным определение расчетного предела текучести стали. В работах, опубликованных в 1924 году, Яков Френкель смог определить значение напряжения, которого достаточно для деформирования простых тел, используя в качестве исходной величины прочность связей между атомами. Такие вычисления в начале XX века были крайне сложными, но начало было положено.

Значение предела текучести ученый рассчитал по формуле:

ττ = G / 2π, где

G – модуль сдвига, определяющий устойчивость межатомных связей,

ττ – обозначение предела текучести стали при кручении.

По мере развития науки повысившаяся точность расчетов позволила существенно расширить область применения металлоконструкций и механизмов в строительстве и многих других сферах.

Практическое значение предела текучести стали

Специалисты уделяют стальным сплавам особое внимание, разрабатывая методики расчета прочностных показателей и определяя предельно допустимые нагрузки на детали из разных типов стали, так как сегодня это самый востребованный в промышленности и строительстве материал.

Детали и элементы из стали при эксплуатации часто испытывают на себе серьезные нагрузки, в том числе и комбинированные. Изделия подвергаются растяжению, сжатию, изгибанию и сдвигу. Нагрузка может быть статической, динамической или циклической, когда максимум напряжения снова и снова достигается через определенные промежутки времени. Задача специалиста в том, чтобы сделать будущую конструкцию или механизм максимально долговечным, надежным и безопасным.

Типы стали с высоким пределом текучести востребованы по экономическим соображениям, так как дают возможность снизить металлоемкость и массу изделий, сохраняя при этом высокое качество и соответствие нормам ГОСТа, ТУ и другим стандартам.

Расчетное сопротивление стали по пределу текучести – ключевой показатель, характеризующий устойчивость деталей к деформированию и разрушению под действием различных нагрузок.

Влияние различных добавок на предел текучести стали

Влияние содержания углерода на свойства стали

В соответствии с принципом аддитивности можно проследить зависимость предела текучести стали от процентной доли содержащегося в ней углерода. Увеличивая концентрацию этого элемента до 1,2 %, можно добиться также повышения прочности, твердости и пороговой хладоемкости.


При увеличении процентной доли углерода выше 1,2 % углеродистая сталь демонстрирует существенное ухудшение таких характеристик, как свариваемость и предельная пластичность. Лучше всего поддаются сварке низкоуглеродистые типы стали.

Азот и кислород в сплаве

Оба этих элемента, стоящих в начале периодической таблицы, относят к вредным примесям. Они ухудшают качество сплава, отрицательно сказываясь на его вязкости и пластичности, снижая сопротивление хрупкому разрушению. Доля кислорода в составе выше 0,03 % ускоряет старение стали, а примесь азота способствует повышению ее ломкости. Однако в отдельных случаях азот может улучшать прочностные характеристики за счет снижения предела текучести.

Добавки марганца и кремния

Марганец в качестве легирующей добавки используют, чтобы раскислить сплав и нивелировать вредное воздействие серы. Благодаря близости свойств этого металла и железа его добавление в состав стальных сплавов само по себе не оказывает какого-либо заметного влияния на их характеристики. Обычно в стали содержится порядка 0,8 % этого элемента.

Кремний добавляют для раскисления сплава в концентрации не более 0,4 %. Дальнейшее повышение процентной доли этого элемента отрицательно сказывается на свариваемости. В конструкционных марках стали по этой причине содержание кремния не превышает 0,25 %. В остальном добавление этого компонента не меняет ключевых свойств металла.

Примеси серы и фосфора

Сера является исключительно вредной примесью и отрицательно воздействует на многие физические свойства и технические характеристики материалов. Предельно допустимое содержание этого элемента в стальных сплавах в виде хрупких сульфитов – 0,06 %.

Присутствие серы в составе стали ведет к снижению таких показателей, как предел текучести, пластичность, ударная вязкость, устойчивость к износу и коррозии.

Воздействие фосфора двояко: он влияет на ряд физико-химических характеристик. Добавление этого элемента повышает предел текучести, но при этом параллельно снижает ударную вязкость и пластичность. Допустимая процентная доля этой примеси колеблется от 0,025 до 0,044 %. Негативное воздействие фосфора усиливается при повышении углеродистости сплава.

Легирующие добавки в составе сплавов

Легирующие элементы (специальные добавки) используются для приведения его характеристик к требуемым значениям. Улучшенный таким способом металл принято называть легированным. Для достижения оптимального эффекта такие дополнения вводятся комбинированно с соблюдением нужных пропорций.


Для легирования используют хром, никель, ванадий, молибден и другие элементы. Их добавление дает возможность повысить предел текучести, прочность, ударную вязкость, устойчивость к коррозии и ряд других механических и физико-химических характеристик.

Значение предела текучести стали по ГОСТу

Предел текучести (σТ) для различных марок стали регламентируют соответствующие ГОСТы. Все значения указаны в МПа и с примечанием «не менее». Ниже приводятся примеры для наиболее широко применяемых типов.

ГОСТ 1050 от 1988 года для качественных углеродистых конструкционных видов стали содержит значения предела текучести сплава при температуре +20 °С (образцы, диаметр или толщина которых не превышает 80 мм):

  • сталь 20 (Ст20, 20) при T = +20 °С, прокат, нормализованная – не менее 245 МПа;
  • сталь 30 (Ст30, 30) при T = +20 °С, прокат, нормализованная – не менее 295 МПа;
  • сталь 45 (Ст45, 45) при T = +20 °С, прокат, нормализованная – не менее 355 МПа.


Если сталь изготавливается по согласованию с заказчиком, то ГОСТ предусматривает другие нормы. В частности, нормативный предел текучести стали для образцов, прошедших термообработку, должен быть:

Сталь 30 (Ст30, закалка и отпуск)

  • прокат размером до 16 мм – не менее 400 МПа;
  • прокат размером от 16 до 40 мм – не менее 355 МПа;
  • прокат размером от 40 до 100 мм – не менее295 МПа.

Сталь 45 (Ст45, закалка и отпуск)

  • прокат размером до 16 мм – не менее 490 МПа;
  • прокат размером от 16 до 40 мм – не менее 430 МПа;
  • прокат размером от 40 до 100 мм – не менее 375 МПа.

Указанные для Ст30 параметры относятся к прокату до 63 мм (ГОСТ 4543 от 1971 года).

Сталь 40Х (СТ40Х, сталь конструкционная легированная, хромистая, ГОСТ 4543 от 1971 года): для проката размером 25 мм (закалка и отпуск)– предел текучести не менее 785 МПа.

Сталь 09Г2С (лист, конструкционная низколегированная для сварных конструкций, кремнемарганцовистая, ГОСТ 5520 от 1979 года) – предел текучести не менее 265 – 345 МПа. При высокой температуре предел текучести стали составляет: +250 °С – 225 МПа; +300 °С –196 МПа; +350 °С – 176 МПа; +400 °С – 157 МПа.

Сталь 3 (углеродистая обыкновенного качества, ГОСТ 380 от 2005 года) выпускается под марками: Ст3кп, Ст3пс, Ст3сп, Ст3Гпс, Ст3Гсп, каждая имеет регламентированный минимальный предел текучести.

Проверка сплава на предел текучести

Перед началом производства свойства сплавов изучают, проводя испытания, в ходе которых образцы подвергают воздействию различных нагрузок до полной утраты изначальных характеристик.


Металл подвергают:

  • статистическим нагрузкам;
  • проверке на выносливость и усталость;
  • растягиванию;
  • изгибанию и скручиванию;
  • изгибанию с растяжением.

Для испытания образцов пользуются специальным оборудованием, создавая близкие или аналогичные таковым условия при последующей эксплуатации изделий.

Для исследования берется образец цилиндрической формы (сечение 20 мм, длина 10 мм), на который воздействует растягивающая нагрузка. Для захвата вырезается заготовка большей длины, на ней отмечается расчетный отрезок в 10 мм. Увеличивая силу воздействия, фиксируют удлинение, отмечая данные на графике – диаграмме условного растяжения.

При малой силе воздействия происходит пропорциональное удлинение расчетного отрезка, пока по мере увеличения напряжения не будет достигнут предел пропорциональности.

Далее удлинение становится непропорциональным и достигает порога, пройдя который образец не может вернуться к изначальной длине. На следующем этапе изменение длины идет без увеличения силы, воздействующей на него, – достигается предел текучести. К примеру, для прута Ст3 это состояние возникает при нагрузке 240 МПа.

Материалы, самостоятельно деформирующиеся в течение длительного периода времени при неизменной силе воздействия, принято называть идеально пластическими.

Случается, что нет возможности четко определить площадку текучести. В таких случаях пользуются определением «условный предел текучести», который подразумевает деформацию или остаточное изменение около 0,2 %. Эта величина может варьировать в зависимости от того, насколько пластичен конкретный металл.

Чем ниже пластичность, тем меньше остаточное изменение. Слабо выраженная деформация свойственна «уплотняющимся сплавам» – меди, латуни, алюминию, низкоуглеродистым типам стали.

В ходе исследований и испытаний выяснилось, что в металле, который начал «течь», имеют место существенные искажения кристаллической решетки с формированием линий сдвига слоев.

После самопроизвольного растяжения металл достигает следующего состояния и вновь начинает сопротивляться деформированию. Далее материал проходит предел прочности, образуется слабая область, где образец начинает сужаться.

Рекомендуем статьи

  • Арматурная сталь: характеристики, виды, сферы применения
  • Мартенситная сталь: характеристики, сферы применения
  • Катодное покрытие: виды получения и сферы использования

Происходит быстрое уменьшение площади поперечного сечения, сопровождаемое одновременным падением величины силы воздействия и напряжения с последующим разрывом образца.

Наиболее прочные сплавы выдерживают напряжение до 1 716 МПа. Предел текучести высокопрочной стали Ст3 колеблется от 392 до 490 МПа.

Предел текучести – одна из ключевых характеристик стальных сплавов. Современная промышленность требует большого количества деталей из стали, обладающих высокой прочностью. Поэтому специалисты обязаны уметь правильно рассчитывать главные параметры будущих изделий и применять расчетные данные на практике.


Предел текучести как показатель надежности конструкции

Предел текучести как показатель надежности конструкции. Выбираем марку стали для складского стеллажа


Гношова Ольга Юрьевна, генеральный директор компании «Юнирек»

Первое, на что стоит обратить внимание при выборе стеллажного оборудования - это марка стали, из которой оно будет изготовлено. 

Друзья! Мы находимся в испытательной лаборатории Уральского научно-исследовательского института черных металлов ( ОАО "Уральский институт металлов").


Мы покажем вам, чем отличаются марки стали с точки зрения грузонесущей способности, способности сопротивляться стационарной и динамической нагрузке и за что, в конечном счете, платит покупатель стеллажей.

Марки стали отличаются по химическому составу и физическим свойствам. Нас интересует как деформируется сталь после воздействия на нее нагрузки.
 Деформации разделяют на обратимые (упругие) и необратимые (пластические).

Приведем классический пример из жизни склада: погрузчик ударяет стойку стеллажа.  Если стойка принимает свое изначальное положение, то это «деформация упругая», а если стойка не возвращается в свое проектное положение, принимает «форму погрузчика», то это называется «пластическая деформация».

 
Каждый сплав имеет предел или критический момент, после которого упругая деформация переходит в пластическую. Именно этот показатель – «предел текучести» стали, нас с вами интересует.


Чем выше показатель предела текучести стали, тем дольше сталь способна находиться в напряженном состоянии и противостоять стационарным и динамическим нагрузкам.

Самыми популярными в России марками стали для производства стеллажей являются марки Ст08псСт3пс, Ст3спСт3кпСт350S355МС.

По нашей просьбе, на заводе были изготовлены 4 образца стеллажных стоек. По два образца из стали марок S355MC и Ст3, толщиной 1,5 и 2,0 миллиметра.
 
Для наглядности их окрасили в разные цвета – сталь Ст3 в оранжевый, а сталь S355MC в синий цвет.

Перед испытаниями в Лаборатории определили химический состав (марку стали) образцов при помощи фотоэлектрического спектрального анализа.

Ниже приведена таблица с ориентировочными показателями различных сталей, используемых при производстве стеллажных комплектующих в России (данные показатели могут отличаться в зависимости от партий проката и при разных условиях).

 В Европе при производстве стеллажей используется только сталь с высоким пределом текучести, марки S52 (и других).

σ0,2     - предел текучести условный, МПа

sв        - временное сопротивление разрыву (предел прочности при растяжении), МПа

sT        - предел пропорциональности (предел текучести для остаточной деформации), МПа

d5        - относительное удлинение после разрыва, %

HB      - твердость по Бринеллю

KCU    - ударная вязкость, Дж/см2

Итак, мы подвергли стационарной нагрузке (давлением пресса) две пары стоек.

Первая пара - из стали толщиной 1,5мм





  • Образец из стали Ст3 показал, что пределом его текучести является нагрузка в 94,14 кН, что соответствует 9600 кгс.
  • Образец из стали S355МС показал, что пределом его текучести является нагрузка в 109,8 кН, что соответствует 11200 кгс.

Таким образом, образец из стали S355МС оказался на 16,7% устойчивее к стационарной нагрузке, чем образец из стали Ст3.

Видео показывает, что после наступления критического момента, даже после снижения нагрузки от пресса, образец продолжает деформироваться.

Данное поведение металла стоек следует принимать во внимание в процессе эксплуатации стеллажного оборудования. Необходимо помнить, что деформированная стойка выносит меньшую нагрузку, чем «целая», и поэтому ее нельзя подвергать прежней нагрузке.  

Вторая пара из стали толщиной 2,0 мм


 

  • Образец из стали Ст3 показал, что пределом его текучести является нагрузка в 127,5кН, что соответствует 13000 кгс.
  • Образец из стали S355МС показал, что пределом его текучести является нагрузка в 164,75 кН, что соответствует 16800 кгс.

Таким образом, образец из стали S355МС оказался на 29,5% устойчивее к стационарной нагрузке, чем образец из стали Ст3.

 

Кстати, европейский концерн «Mecalux» не использует для производства паллетных стеллажей сталь толщиной менее 1,8мм.

Для определения устойчивости стали разных марок к динамическим нагрузкам, были произведены испытания образцов по показателю «Предел прочности на растяжение».


Предел прочности на растяжение есть пороговая величина постоянного (для статического предела прочности) или, соответственно, переменного (для динамического предела прочности) механического напряжения, превышая который механическое напряжение в результате (за конечный достаточно короткий промежуток времени) разорвет тело из конкретного материала. 

Нами были подготовлены два образца в виде металлических пластин из стали Ст3 и S355МС, которые поочередно подвергли растяжению

  • Образец из стали Ст3 показал, что пределом его прочности является нагрузка в 8,24кН, что соответствует 840 кгс.
  • Образец из стали S355МС показал, что пределом его прочности является нагрузка в 10,2 кН, что соответствует 1040 кгс.

Таким образом, образец из стали S355МС оказался на 23,85% прочнее на растяжение, чем образец из стали Ст3.

Сегодняшними испытания мы хотели наглядно показать, что образцы из разных марок стали ведут себя по-разному после воздействия нагрузки.

Вы увидели, что образцы из S355MC стали держат гораздо большие стационарные и динамические нагрузки, чем образцы из стали Ст3.

Поэтому, при выборе стеллажного оборудования марка стали имеет значение!

Надеемся, что приведенная информация покажется Вам интересной и полезной. 

ООО «Юнирек» проектирует и поставляет стеллажное оборудование уже более 8-ми лет, безаварийная служба поставленного оборудования обеспечена политикой компании – мы не идем на компромиссы в вопросах качества и безопасности.

   

  

  

Таблица преобразования доходности в сигму

Выход % Сигма Дефектов на миллион
Возможности
99,9997 6,00 3,4
99,9995 5,92 5
99,9992 5,81 8
99,9990 5,76 10
99,9980 5,61 20
99,9970 5,51 30
99,9960 5,44 40
99,9930 5,31 70
99,9900 5,22 100
99,9850 5. 12 150
99,9770 5,00 230
99.9670 4,91 330
99,9520 4,80 480
99,9320 4,70 680
99.9040 4,60 960
99,8650 4,50 1350
99,8140 4,40 1860
99,7450 4,30 2550
99. 6540 4,20 3460
99,5340 4.10 4660
99.3790 4,00 6210
99.1810 3,90 8190
98.9300 3,80 10700
98.6100 3,70 13900
98.2200 3,60 17800
97.7300 3,50 22700
97. 1300 3,40 28700
96.4100 3,30 35900
95.5400 3,20 44600
94.5200 3.10 54800
93.3200 3,00 66800
91.9200 2,90 80800
90.3200 2,80 96800
88,5000 2,70 115000
86,5000 2,60 135000
84. 2000 2,50 158000
81.6000 2,40 184000
78,8000 2,30 212000
75.8000 2,20 242000
72,6000 2.10 274000
69.2000 2,00 308000
65,6000 1,90 344000
61,8000 1,80 382000
58. 0000 1,70 420000
54.0000 1,60 460000
50.0000 1,50 500000
46.0000 1,40 540000
43.0000 1,32 570000
39.0000 1,22 610000
35.0000 1.11 650000
31.0000 1,00 6

28. 0000 0,92 720000
25.0000 0,83 750000
22.0000 0,73 780000
19.0000 0,62 810000
16.0000 0,51 840000
14.0000 0,42 860000
12.0000 0,33 880000
10.0000 0,22

0

8. 0000 0,09 920000

Допущения
Анализ не будет полным без надлежащего учета сделанных допущений. В приведенной выше таблице мы предположили, что стандартный сигма-сдвиг, равный 1,5, подходит (калькулятор сигма процесса позволяет указать другое значение), данные нормально распределены и процесс стабилен. Кроме того, расчеты производятся с использованием односторонних значений нормального распределения.

об авторе

Как измерить доходность программы «Шесть сигм»

Вам нужно будет уметь измерять доходность своей инициативы «Шесть сигм». Проще говоря, процесс или характеристика могут либо соответствовать, либо не соответствовать своей спецификации. Точно так же, как при сборе плодов с яблони, выход характеристики или процесса зависит от того, сколько хороших продуктов — производительность в пределах спецификаций — вы получаете.

Традиционный выход: выход по сравнению с входом

Традиционно выход — это доля правильных изделий (соответствующих спецификациям), которые вы получаете в результате процесса, по сравнению с количеством необработанных элементов, которые вы в него вложили.

Традиционный расчет производительности часто используется на заключительном этапе контроля процесса для измерения эффективности всего процесса. Таким образом, для процесса накачки шин автомобилей на сборочной линии исследование может показать, что из 352 автомобилей, которые прошли процесс накачки шин в течение рабочего дня, 347 позже имели давление в пределах требуемых спецификаций. .

В этом случае традиционная доходность составляет

или 98,6 процента.

Вы можете преобразовать пропорцию, такую ​​как 0,986, в, возможно, более знакомую процентную шкалу, просто умножив пропорцию на 100. Чтобы перейти от процента обратно к пропорции, разделите процент на 100. Только не забывайте всегда выполнять математические операции с пропорциями, а не на проценты.

Перспектива шести сигм: выход с первого раза (FTY)

Результаты расчета доходности традиционным способом вводят в заблуждение, поскольку не учитывают тонкости процесса. Расчет известен как 9Выход 0511 в первый раз ( FTY ) часто сильно отличается от традиционного выхода. Это потому, что, в отличие от традиционной доходности, она отражает суровую реальность эффективности процесса.

После накачивания шина немедленно проверяется, чтобы убедиться, что она соответствует требуемым предельным значениям давления. В примере обнаружено 103 шины, которые не соответствуют спецификации давления.

Разумеется, операторы процесса просмотрели каждый из этих 103 и исправили (или переделал ) 98 из них, оставив только пять, которые не смогли вернуть в нужный диапазон давления и были вынуждены утилизировать. Имея эту подробную информацию, вы теперь знаете, что доля шин, правильно прошедших процесс накачки в первый раз, составляет 90 505.

или 70,7 процента

Как найти скрытую фабрику

Скрытая фабрика является естественным результатом неспособности системы правильно соответствовать требуемым спецификациям с первого раза в процессе. То тут, то там во всех организациях возникают практики переделки и исправления, которые укореняются как часть стандартной практики «мы делаем именно так». Но если вы измеряете доходность, используя метод доходности в первый раз, вы, естественно, объективно оцениваете и подтверждаете эффективность процесса.

В примере с процессом накачивания шин на скрытую фабрику внутрипроизводственного контроля и доработки приходится 0,986 – 0,707 = 0,279 или 27,9 процента производства. Все вместе скрытые фабрики внутри организаций, снижающие стоимость, объединяются, чтобы потреблять ценные ресурсы и время.

Пропускная способность проката (RTY)

На самом деле отдельные этапы процесса, такие как пример с накачкой шин в предыдущем разделе, объединены вместе, чтобы создать общую структуру процесса для выполнения сложных задач. Один из способов количественной оценки сложности системы «Шесть сигм» — это подсчет количества задействованных процессов.

Как рассчитать общий доход для цепочки процессов? Вы умножаете первоначальный доход для каждого шага вместе, создавая то, что называется прокатной пропускной способностью ( RTY ). В примере с заказом на поставку пропускная способность для этого пятиэтапного процесса составляет 90 505.

Это означает, что вероятность того, что заказ на поставку будет обработан с первого раза без переделок или брака, составляет всего 51,8 процента! (Последний шаг «подтверждения» в процессе действует как окончательный тест. Этот последний шаг имеет 90-процентная доходность, так что вы знаете, что должно быть много скрытых фабричных вещей, чтобы снизить RTY до 51,8 процента.)

Вы можете упростить формулу для производительности проката до

, где заглавная греческая буква пи (Π) говорит вам перемножить все первоначальные выходы системы вместе.

Даже если первоначальная производительность отдельных этапов процесса высока, если общий процесс становится все более и более сложным, пропускная способность системы будет продолжать снижаться. На рис. 13-5 показано, как сложность снижает пропускную способность проката для различных уровней индивидуального первого выхода.


Learn more