Типы расцепления автоматических выключателей


Автоматический выключатель – типы мгновенного расцепления B, C, D: y_kharechko — LiveJournal

?
На автоматических выключателях (см. http://y-kharechko.livejournal.com/33943.html ) можно увидеть следующую маркировку: B10, C16, D25 и т.д. Цифрами 10, 16, 25 и т.д. обозначены значения номинального тока (см. https://y-kharechko.livejournal.com/90988.html ) автоматических выключателей, а буквами B, C, D – типы мгновенного расцепления.
Рассмотрим характеристику «тип мгновенного расцепления» автоматического выключателя и общие рекомендации по применению автоматических выключателей с типами мгновенного расцепления B, C, D в электроустановках индивидуальных жилых домов и квартир.

Каждый автоматический выключатель имеет индивидуальный ток мгновенного расцепления – минимальный электрический ток, вызывающий срабатывание автоматического выключателя без выдержки времени – за время менее 0,1 с. Такое срабатывание инициирует электромагнитный расцепитель короткого замыкания (см. конструкцию http://y-kharechko.livejournal.com/36382.html ).
В стандарте МЭК 60898-1:2015 «Электрические аксессуары. Автоматические выключатели для защиты от сверхтока для бытовых и подобных установок. Часть 1. Автоматические выключатели для оперирования при переменном токе» и ГОСТ Р 50345–2010 (МЭК 60898-1:2003) «Аппаратура малогабаритная электрическая. Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения. Часть 1. Автоматические выключатели для переменного тока» для каждого типа мгновенного расцепления установлены следующие стандартные диапазоны токов мгновенного расцепления, кратные номинальному току In:
тип В – свыше 3 In до 5 In;
тип С – свыше 5 In до 10 In;
тип D – свыше 10 In до 20 In.
Для универсальных автоматических выключателей требованиями стандарта МЭК 60898-2:2016 «Электрические аксессуары. Автоматические выключатели для защиты от сверхтока для бытовых и подобных установок. Часть 2. Автоматические выключатели для оперирования при переменном токе и постоянном токе» и ГОСТ IEC 60898-2–2011 «Выключатели автоматические для защиты от сверхтоков электроустановок бытового и аналогичного назначения. Часть 2. Выключатели автоматические для переменного и постоянного тока» предусмотрено только два типа мгновенного расцепления – B и C. При этом для постоянного тока даны иные, чем для переменного тока, стандартные диапазоны токов мгновенного расцепления:
тип В – свыше 4 In до 7 In;
тип С – свыше 7 In до 15 In.
Если в главной цепи автоматического выключателя протекает электрический ток, величина которого равна нижней границе стандартного диапазона токов мгновенного расцепления (3 In, 5 In, 10 In переменного тока, а для универсальных автоматических выключателей также 4 In и 7 In постоянного тока), то автоматический выключатель должен расцепиться за промежуток времени более 0,1 с, но менее 45 с или 90 с (тип мгновенного расцепления B), 15 с или 30 с (тип мгновенного расцепления C) и 4 с или 8 с (тип мгновенного расцепления D) соответственно при номинальном токе до 32 А включительно и более 32 А. То есть нижняя граница стандартного диапазона токов мгновенного расцепления не является током мгновенного расцепления.
При протекании в главной цепи автоматического выключателя электрического тока, равного верхней границе стандартного диапазона токов мгновенного расцепления (5 In, 10 In, 20 In переменного тока или 7 In, 15 In постоянного тока), он должен расцепиться за промежуток времени менее 0,1 с. То есть верхняя граница стандартного диапазона токов мгновенного расцепления представляет собой максимально допустимое значение тока мгновенного расцепления. Любой сверхток, превышающий верхнюю границу стандартного диапазона токов мгновенного расцепления, тем более, должен вызывать мгновенное расцепление автоматического выключателя.
Если значение электрического тока, протекающего в главной цепи автоматического выключателя, находится между нижней и верхней границами стандартного диапазона токов мгновенного расцепления, он может расцепиться либо с незначительной выдержкой времени (несколько секунд), либо без выдержки времени (менее 0,1 с). Фактическое время срабатывания конкретного автоматического выключателя определяется его индивидуальной времятоковой характеристикой. Ток мгновенного расцепления автоматического выключателя также определяется его индивидуальной времятоковой характеристикой.
Стандарт МЭК 60898-1 и ГОСТ Р 50345 классифицируют автоматические выключатели согласно их токам мгновенного расцепления по типам B, С и D. То есть все автоматические выключатели подразделяют по трём типам мгновенного расцепления: тип B, тип С и тип D. Конкретному типу мгновенного расцепления соответствует собственный стандартный диапазон токов мгновенного расцепления, а также собственная стандартная времятоковая зона. Для универсальных автоматических выключателей стандартом МЭК 60898-2 и ГОСТ IEC 60898-2 предусмотрены два типа мгновенного расцепления B и С.
Некоторые фирмы производят автоматические выключатели с другими типами мгновенного расцепления, имеющими нижние и верхние пределы диапазонов переменных токов мгновенного расцепления, значения которых меньше соответствующих пределов, установленных для типа мгновенного расцепления В. Например, выпускаются автоматические выключатели, имеющие диапазон токов мгновенного расцепления свыше 2 In до 3 In. Подобные типы мгновенного расцепления не предусмотрены стандартами МЭК 60898-1 и МЭК 60898-2.
Автоматические выключатели с типом мгновенного расцепления В целесообразно применять для защиты от сверхтока большинства конечных электрических цепей в электроустановках индивидуальных жилых домов и в электроустановках квартир. Например, с их помощью можно выполнять защиту конечных электрических цепей освещения и штепсельных розеток.
Автоматические выключатели с типом мгновенного расцепления С обычно используют для защиты от сверхтока электрических цепей, в которых возможны большие пусковые токи при включении электрооборудования, например, конечных электрических цепей освещения, где предусматривается одновременное включение большого числа светильников, конечных электрических цепей электродвигателей и др.
Автоматические выключатели с типом мгновенного расцепления D необходимо применять для защиты от сверхтока тех электрических цепей, в которых имеются большие импульсные токи, появляющиеся, например, при включении трансформаторов, электромагнитных клапанов, больших ёмкостных нагрузок и другого электрооборудования, характеризующегося очень большими пусковыми токами.

Tags: ГОСТ IEC 60898-2, ГОСТ Р 50345, МЭК 60898-1, МЭК 60898-2, автоматический выключатель, номинальный ток, расцепитель, сверхток, тип мгновенного расцепления, ток мгновенного расцепления

Subscribe

  • Стандарт МЭК 60364-1: проект, стадия CD2, система IT переменного тока

    28 августа 2020 г. завершился приём замечаний и предложений по документу 64/2451/CD (CD – проект комитета), который является вторым вариантом Проекта…

  • Стандарт МЭК 60364-1: проект, стадия CD2, система TT переменного тока

    28 августа 2020 г. завершился приём замечаний и предложений по документу 64/2451/CD (CD – проект комитета), который является вторым вариантом Проекта…

  • Стандарт МЭК 60364-1: проект, стадия CD2, системы TN переменного тока, несколько источников питания

    28 августа 2020 г. завершился приём замечаний и предложений по документу 64/2451/CD (CD – проект комитета), который является вторым вариантом Проекта…

Photo

Hint http://pics. livejournal.com/igrick/pic/000r1edq

Автоматические выключатели и их характеристики B, C, D

Основными характеристиками автоматических выключателей являются

Номинальный ток (In):

ток, который может протекать через автомат, без его срабатывания. 

Номинальное рабочее напряжение (Ue)

номинальное, на которое рассчитана изоляция автомата 

Номинальное напряжение изоляции (Ui)

Это величина напряжения, относительно которого выбирается напряжение при испытании электрической прочности изоляции, которое обычно превышает 2 Ui, и определяется длина пути тока утечки через изолятор.

Номинальное выдерживаемое импульсное напряжение (Uimp)

Параметр представляет собой величину импульса напряжения (определенной формы и полярности) в кВ, который рассматриваемое оборудование может выдержать в условиях испытаний без повреждения.

Обычно для промышленных автоматических выключателей Uimp = 8 кВ, для бытовых автоматических выключателей Uimp = 6 кВ.

Отключающая способность:

ток (в кА), срабатывания автомата при коротком замыкании, после которого он еще будет работоспособен. 

Характеристика автоматов В, С, D:

зависимость времени отключения от тока. 

Буквы B, C и D обозначают характеристику автоматов, которая называется «тип мгновенного расцепления» и установлена в ГОСТ Р 50345-99] (МЭК 60898-95) «Аппаратура малогабаритная электрическая. автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения».

Конкретный тип мгновенного расцепления устанавливает диапазон токов мгновенного расцепления, протекание которых в главной цепи выключателя может вызвать его расцепление без выдержки времени.

В ГОСТ Р 50345 для каждого типа мгновенного расцепления установлены следующие стандартные диапазоны токов:

тип В: 3In - 5In;

тип С: 5 In -10 In

тип D:10 In - 20 In

Стандартная времятоковая зона предписывает следующее поведение автоматического выключателя:

В случае если в главной цепи выключателя протекает электрический ток, величина которого соответствует нижней границе диапазона токов мгновенного расцепления 3In, 5In и 10 In, то он должен расцепиться за промежуток времени:

тип мгновенного расцепления B - более 0,1 с, но менее 45 или 90 с,

тип C - 15 или 30с

тип D - 4 или 8с.

При протекании в главной цепи электрического тока, равного верхней границе диапазона токов мгновенного расцепления (5In, 10In и 50In), автоматический выключатель должен расцепиться за промежуток времени менее 0,1 с.

В том случае, если значение электрического тока, протекающего в главной цепи, находится между нижней и верхней границами диапазона токов мгновенного расцепления, автоматический выключатель может расцепиться либо с незначительной выдержкой времени (несколько секунд), либо без выдержки времени (менее 0,1 с).

Фактическое время срабатывания автомата определяется его индивидуальной времятоковой характеристикой. 

Исходя из вышенаписанного автоматы предназначены:

типа В - для защиты потребителей с преимущественно активной нагрузкой (печь, обогреватель, ЛН),

типа С - двигателей,

типа D - двигателей в повторно-кратковременном (частые пуски) режиме работы. 

Кривые срабатывания автоматического выключателя.

Кривая отключения B, C, D, K и Z

Автоматический выключатель — это защитное устройство, используемое в каждой электрической цепи для предотвращения любой потенциальной опасности. Во всем мире используются различные типы автоматических выключателей из-за их различных характеристик и областей применения. Необходимо иметь автоматический выключатель, обеспечивающий достаточную защиту, чтобы можно было безопасно работать с ним, не опасаясь каких-либо потенциальных опасностей. Вот почему лучше всего узнать об этих типах автоматических выключателей и о том, какие виды защиты они предлагают, прежде чем покупать их.

Содержание

Что такое автоматический выключатель?

Автоматический выключатель представляет собой электрическое устройство, обеспечивающее защиту от тока короткого замыкания. Он разрывает цепь в случае перегрузки и короткого замыкания. Токи короткого замыкания, возникающие из-за этих условий неисправности, могут повредить электрические устройства, а также вызвать пожар в здании, который также может представлять опасность для жизни человека.

Автоматический выключатель мгновенно отключает подачу питания, чтобы уменьшить дальнейшие повреждения. Автоматический выключатель имеет два типа расцепителей: тепловой и магнитный расцепители.

Тепловой расцепитель: тепловой расцепитель используется для защиты от перегрузки. В нем используется биметаллический контакт, который изгибается при изменении температуры. Ток, протекающий через биметаллическую пластину, нагревает контакты и отключает автоматический выключатель.

Скорость изгиба биметаллической полосы зависит от силы тока. Следовательно, чем больше ток перегрузки, тем быстрее срабатывает автоматический выключатель.

Магнитный расцепитель: Магнитный расцепитель используется для защиты от тока короткого замыкания. он включает в себя соленоид, который создает сильное магнитное поле из-за высокого тока короткого замыкания, чтобы мгновенно отключить автоматический выключатель.

Похожие сообщения:

  • MCB (миниатюрный автоматический выключатель) – конструкция, работа, типы и применение
  • MCCB (автоматический выключатель в литом корпусе) – конструкция, типы и работа

Что такое кривая отключения?

Кривая отключения, также известная как диаграмма текущего времени, представляет собой графическое представление реакции автоматического выключателя. Он показывает текущую взаимосвязь со временем срабатывания устройства защиты.

Зачем нужны разные кривые срабатывания?

Автоматические выключатели используются для максимально быстрого отключения источника питания в случае перегрузки по току. Но он не должен срабатывать так быстро и ненужно, чтобы это стало проблемой.

Перегрузка по току может произойти при нормальных условиях, таких как пусковой ток двигателя. Пусковой ток — это огромное потребление тока во время пуска двигателя, которое вызывает провалы напряжения в главной линии. Автоматический выключатель должен выдерживать пусковой ток и обеспечивать некоторую задержку перед отключением.

Таким образом, выбранный автоматический выключатель не должен срабатывать слишком быстро, чтобы создать помехи, и не должен срабатывать слишком поздно, чтобы причинить какой-либо ущерб. Здесь в игру вступают характеристики срабатывания автоматических выключателей.

Кривая отключения показывает, как быстро автоматический выключатель сработает при определенном токе. Различные кривые отключения классифицируют автоматические выключатели по категориям, где каждая категория используется для определенных типов нагрузок. Очень важно выбрать автоматический выключатель, обеспечивающий необходимую защиту от перегрузки по току.

Related Posts:

  • Типы автоматических выключателей – работа и применение
  • Воздушный автоматический выключатель (ACB): конструкция, работа, типы и применение

Как читать кривую срабатывания?

На следующем рисунке показан график кривой отключения.

Горизонтальная ось X представляет кратное значение тока, протекающего через автоматический выключатель. В то время как ось Y представляет время срабатывания автоматического выключателя в логарифмическом масштабе.

Тепловая область показывает реакцию расцепителя с биметаллическими контактами при перегрузке по току. Кривая показывает, что время срабатывания автоматического выключателя уменьшается с увеличением тока. Первая кривая на графике показывает реакцию теплового расцепителя.

В то время как магнитная область показывает реакцию соленоида на ток короткого замыкания, такой как ток короткого замыкания.

Как видно из графика, автоматический выключатель не имеет фиксированного времени срабатывания, и мы не можем предсказать точную точку срабатывания. Это связано с тем, что на отключение влияют условия окружающей среды, такие как температура. Думайте об этом как о зоне кота Шредингера, мы не знаем, когда произойдет спотыкание, если событие не произойдет.

Типы автоматических выключателей на основе кривых срабатывания

Автоматические выключатели делятся на следующие пять типов в зависимости от их кривых срабатывания.

Тип B

Этот тип автоматического выключателя предназначен для мгновенного срабатывания, когда рабочий ток в 3-5 раз превышает номинальный. Время их срабатывания составляет от 0,04 до 13 секунд. Они подходят для бытового применения, где перенапряжения очень низкие, например, для освещения и резистивных нагрузок.

Они чувствительны и не должны использоваться в местах, где обычные перенапряжения вызывают ненужное срабатывание.

Тип C

Автоматический выключатель типа C срабатывает мгновенно при скачках тока в 5-10 раз превышающих номинальный ток. время его срабатывания составляет от 0,04 до 5 секунд. Поскольку они могут выдерживать более высокие импульсные токи, они используются в коммерческих приложениях, таких как защита небольших двигателей, трансформаторов и т. д. его номинальный ток. Время его срабатывания составляет от 0,04 до 3 секунд. Такие автоматические выключатели могут выдерживать высокие пусковые токи больших двигателей. Поэтому они подходят для работы с большими нагрузками в промышленных условиях.

Тип K

Автоматические выключатели такого типа срабатывают при токе, в 10-12 раз превышающем номинальный, с временем срабатывания от 0,04 до 5 секунд. Эти автоматические выключатели также используются для тяжелых индуктивных нагрузок в промышленности.

Автоматические выключатели типа Z

Автоматические выключатели типа Z являются наиболее чувствительными автоматическими выключателями, которые мгновенно отключаются, когда рабочий ток превышает номинальный ток в 2–3 раза. Они используются для чувствительного оборудования, требующего очень низких настроек отключения при коротком замыкании.

Похожие сообщения:

  • Основное различие между предохранителем и автоматическим выключателем
  • Разница между автоматическими выключателями MCB, MCCB, ELCB и RCB, RCD или RCCB
  • Как прочитать данные паспортной таблички MCB, напечатанные на нем?
  • Как найти правильный размер автоматического выключателя? Калькулятор выключателя и примеры
  • Автоматический выключатель постоянного тока высокого напряжения – типы, работа и применение
  • Можно ли использовать автоматический выключатель переменного тока для цепи постоянного тока и наоборот?
  • Электронный автоматический выключатель — схема и работа
  • Автоматический выключатель Smart WiFi — конструкция, установка и работа
  • Почему мощность автоматического выключателя оценивалась в МВА, а теперь в кА и кВ?
  • Как подключить главную панель 120 В и 240 В? Установка коробки выключателя — США — NEC
  • Как подключить однофазный потребительский блок 230 В (блок выключателя) с УЗО? МЭК, Великобритания и ЕС

Этот пост был опубликован WWW. ELECTRICALTECHNOLOGY.ORG.

URL-адрес скопирован

Показать полную статью

Связанные статьи

Кнопка «Вернуться к началу»

Понимание кривых срабатывания — c3controls

Введение в кривые срабатывания

Кривые срабатывания, также известные как кривые времени и тока, могут быть пугающей темой. Цель этой короткой статьи — познакомить вас с концепцией кривых траектории и объяснить, как их читать и понимать.

Что такое UL?

Underwriters Laboratories (UL) была основана в 189 г.4 как Электрическое бюро андеррайтеров, бюро Национального совета андеррайтеров пожарной охраны. UL была основана в первую очередь для проведения независимых испытаний и сертификации пожарной безопасности электротехнических изделий. Эти продукты включают в себя устройства защиты цепей, обсуждаемые в этой статье.

Устройства защиты цепи

Защита цепи используется для защиты проводов и электрического оборудования от повреждения в случае электрической перегрузки, короткого замыкания или замыкания на землю. Грозовые разряды, перегрузка электрических розеток или внезапный скачок напряжения могут привести к возникновению опасной ситуации, которая может привести к пожару, повреждению оборудования или травмам. Защита цепи предназначена для устранения этого риска до того, как он возникнет, путем отключения питания цепи.

Что такое кривая отключения?

Проще говоря, кривая срабатывания — это графическое представление ожидаемого поведения устройства защиты цепи. Устройства защиты цепей бывают разных форм, включая предохранители, миниатюрные автоматические выключатели, автоматические выключатели в литом корпусе, дополнительные устройства защиты, автоматические выключатели защиты двигателя, реле перегрузки, электронные предохранители и воздушные автоматические выключатели.

Кривые отключения отображают время отключения устройств максимального тока на основе заданного уровня тока. Они предоставляются производителями устройств защиты цепей, чтобы помочь пользователям выбрать устройства, которые обеспечивают надлежащую защиту оборудования и производительность, избегая ложных отключений.

Различные типы кривых отключения

Зачем нужны разные кривые отключения?

Автоматические выключатели должны срабатывать достаточно быстро, чтобы избежать отказа оборудования или проводки, но не настолько быстро, чтобы давать ложные или ложные срабатывания.

Во избежание ложных срабатываний автоматические выключатели должны иметь соответствующие параметры для компенсации пускового тока. NEMA определяет мгновенный пиковый бросок как мгновенный переходный ток, который происходит сразу (в течение половины периода переменного тока) после замыкания контакта .

Пусковой ток вызывает приглушение света в доме при запуске двигателя, например, в сушилке для белья или пылесосе.

На рис. 2 (ниже) показан пример пускового тока для двигателя переменного тока.

Как видно из графика, пусковой ток, вызванный включением двигателя, составляет 30 А. Он намного выше рабочего или установившегося тока. Пусковой ток достигает пика, а затем начинает затухать по мере того, как двигатель раскручивается.

Нам нужны разные кривые отключения, чтобы сбалансировать необходимое количество защиты от перегрузки по току с оптимальной работой машины. Выбор автоматического выключателя с кривой отключения, которая срабатывает слишком рано, может привести к нежелательному отключению. Выбор автоматического выключателя, который срабатывает слишком поздно, может привести к катастрофическому повреждению машины и кабелей.

Как работает MCB?

Чтобы понять кривую срабатывания, полезно понять, как работает миниатюрный автоматический выключатель или устройство защиты от перегрузки по току. На рис. 3 ниже показан вид миниатюрного автоматического выключателя (MCB) изнутри.

Миниатюрный автоматический выключатель с биметаллической пластиной (2) и магнитной катушкой/соленоидом (6) может быть двумя отдельными типами устройств защиты цепи в одном. Биметаллическая пластина обеспечивает защиту от перегрузок в ответ на меньшие перегрузки по току, обычно в 10 раз превышающие рабочий ток. Металлическая полоса состоит из двух полос разных металлов, соединенных вместе, которые расширяются с разной скоростью при нагревании. В ситуации перегрузки биметаллическая полоса изгибается, и это движение приводит в действие расцепляющий механизм и разрывает (размыкает) цепь. Лента преобразует изменение температуры в механическое перемещение.

Магнитная катушка или соленоид (6) реагирует на быстрые и высокие перегрузки по току, вызванные короткими замыканиями, обычно более чем в 10 раз превышающие рабочий ток – до десятков или сотен тысяч ампер. Сильный ток вызывает создание магнитного поля катушкой, которая быстро (в течение микросекунд) перемещает внутренний поршень, приводя в действие исполнительный механизм и размыкая цепь.

Кривая отключения

Рис. 4 (ниже) представляет собой график кривой отключения.

  • Ось X представляет кратное значение рабочего тока автоматического выключателя.
  • Ось Y представляет время срабатывания. Логарифмическая шкала используется для отображения времени от 0,001 секунды до 10 000 секунд (2,77 часа) при кратности рабочего тока.

На рис. 5 (ниже) показана кривая отключения B, наложенная на график. Три основных компонента кривой отключения:

  1. Тепловая кривая отключения. Это кривая отключения для биметаллической пластины, которая предназначена для более медленных перегрузок по току, чтобы учесть бросок/запуск, как описано выше.
  2. Кривая магнитного отключения. Это кривая срабатывания катушки или соленоида. Он предназначен для быстрой реакции на большие перегрузки по току, такие как короткое замыкание.
  3. Идеальная кривая поездки. Эта кривая показывает желаемую кривую срабатывания биметаллической пластины. Из-за органической природы биметаллической пластины и изменяющихся условий окружающей среды трудно точно предсказать точную точку срабатывания.

Как кривая срабатывания связана с фактическим автоматическим выключателем?

На рис. 6 (ниже) показано, как внутренние компоненты MCB соотносятся с кривой срабатывания.

В верхней части диаграммы показана кривая теплового отключения для биметаллической пластины. Это говорит нам о том, что при 1,5-кратном номинальном токе самое быстрое срабатывание автоматического выключателя составляет сорок секунд (1). Сорок секунд при двойном номинальном токе — это самое медленное срабатывание автоматического выключателя (2).

Нижняя часть диаграммы предназначена для магнитного отключения катушки/соленоида; От 0,02 до 2,5 секунд при 3-кратном номинальном токе — это самое быстрое время срабатывания автоматического выключателя (3). Такая же продолжительность, от 0,02 до 2,5 секунд, при 5-кратном номинальном токе является наибольшим временем, которое требуется автомату для отключения (4).

Область, заштрихованная между ними, — это зона срабатывания.

ВАЖНАЯ ИНФОРМАЦИЯ. Кривые срабатывания представляют прогнозируемое поведение автоматического выключателя в холодном состоянии (температура окружающей среды в помещении). Холодное состояние — это когда биметаллическая пластина находится в пределах рабочей температуры окружающей среды для выключателя. Если выключатель недавно испытал тепловое отключение и не остыл до температуры окружающей среды, он может отключиться раньше.

Собираем все вместе

Рисунок 7 (ниже) дает более четкое представление об этих концепциях.

Обратите особое внимание на зону срабатывания, где выключатель может сработать или не сработать. Думайте об этом как о зоне кота Шредингера. Внутри зоны, пока не произойдет перегрузка по току, мы не знаем точно, когда/сработает ли выключатель (кот Шредингера = мертвый) или не сработает ли выключатель (кот Шредингера = живой).

Теперь, когда мы собрали все вместе, становится ясно, что выбор автоматического выключателя на 10 А, кривая B может привести к ложным срабатываниям, поскольку выключатель входит в зону срабатывания при 30 А. (См. рис. 8 ниже.) Наиболее часто для электродвигателей выбирают выключатели с характеристикой D, хотя иногда можно выбрать выключатели с характеристикой C для приложений со смешанной нагрузкой в ​​одной и той же цепи.

Тремя наиболее распространенными кривыми отключения для миниатюрных автоматических выключателей являются B, C и D. Поместив все три на одну диаграмму (рис. 9 ниже), мы можем увидеть, как тепловая часть кривых похожа друг на друга, но существуют различия в том, как работает магнитная характеристика (катушка/соленоид) и, следовательно, автоматический выключатель.

Вкратце:

Защита цепи используется для защиты проводов и электрического оборудования от повреждений в случае электрической перегрузки, короткого замыкания или замыкания на землю. Грозовые разряды, перегрузка электрических розеток или внезапный скачок напряжения могут привести к возникновению опасной ситуации, которая может привести к возгоранию, повреждению оборудования или травмам. Защита цепи предназначена для устранения этого риска до того, как он возникнет, путем отключения питания цепи.

  • К устройствам защиты цепей относятся плавкие предохранители, миниатюрные автоматические выключатели, автоматические выключатели в литом корпусе, дополнительные устройства защиты, автоматические выключатели защиты двигателя, реле перегрузки, электронные предохранители и воздушные автоматические выключатели.
  • Кривые отключения предсказывают поведение устройств защиты цепи как в более медленных и меньших условиях перегрузки по току, так и в более крупных и быстрых условиях перегрузки по току.
  • Выбор правильной кривой срабатывания для вашего приложения обеспечивает надежную защиту цепи, ограничивая при этом ложные срабатывания.

Этот документ представляет собой краткий обзор кривых отключения. Это не окончательный ответ по этой теме. Нам еще многое предстоит узнать, включая другие типы кривых отключения и координацию автоматических выключателей. Теперь, когда мы рассмотрели основы, можно уверенно подходить к этим темам.

Заявление об отказе от ответственности:
Содержимое, представленное в этом техническом документе, предназначено исключительно для общих информационных целей и предоставляется с пониманием того, что авторы и издатели не занимаются предоставлением инженерных или других профессиональных консультаций или услуг. Практика проектирования определяется конкретными обстоятельствами, уникальными для каждого проекта.


Learn more