Аргон химия


Аргон

Аргон
Атомный номер 18
Внешний вид простого вещества инертный газ без цвета, вкуса и запаха
Свойства атома
Атомная масса
(молярная масса)
39,948 а. е. м. (г/моль)
Радиус атома  ? (71)[1]пм
Энергия ионизации
(первый электрон)
1519,6(15,75) кДж/моль (эВ)
Электронная конфигурация [Ne] 3s2 3p 6
Химические свойства
Ковалентный радиус 106 пм
Радиус иона 154 пм
Электроотрицательность
(по Полингу)
0,0
Электродный потенциал 0
Степени окисления 0
Термодинамические свойства простого вещества
Плотность (при -186 °C) 1,40 г/см³
Молярная теплоёмкость 20,79[2]Дж/(K·моль)
Теплопроводность 0,0177 Вт/(м·K)
Температура плавления 83,8 K
Теплота плавления n/a кДж/моль
Температура кипения 87,3 K
Теплота испарения 6,52 кДж/моль
Молярный объём 24,2 см³/моль
Кристаллическая решётка простого вещества
Структура решётки кубическая гранецентрированая
Параметры решётки 5,260 Å
Отношение c/a
Температура Дебая 85 K
Ar 18
39,948
[Ne]3s23p6
Аргон

Аргон — элемент главной подгруппы восьмой группы, третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 18. Обозначается символом Ar (лат. Argon). Третий по распространённости элемент в земной атмосфере (после азота и кислорода) — 0,93 % по объёму. Простое вещество аргон (CAS-номер: 7440–37–1) — инертный одноатомный газ без цвета, вкуса и запаха.

История

Схема атома аргона

История открытия аргона начинается в 1785 году, когда английский физик и химик Генри Кавендиш, изучая состав воздуха, решил установить, весь ли азот воздуха окисляется. С помощью электрофорной машины в течение многих недель он подвергал воздействию электрического разряда смесь воздуха с кислородом в U-образных трубках, в результате чего в них образовывались все новые порции бурых окислов азота, которые исследователь периодически растворял в щёлочи. Через некоторое время образование окислов прекращалось, но, после связывания оставшегося кислорода, оставался газовый пузырь, объём которого не уменьшался при длительном воздействии электрических разрядов в присутствии кислорода. Кавендиш оценил объём оставшегося газового пузыря в 1/120 от первоначального объёма воздуха[4][5]. Разгадать загадку пузыря Кавендиш не смог, поэтому прекратил свое исследование, и даже не опубликовал его результатов. Только спустя много лет английский физик Джеймс Максвелл собрал и опубликовал неизданные рукописи и лабораторные записки Кавендиша.

 

Дальнейшая история открытия аргона связана с именем Рэлея, который несколько лет посвятил исследованиям плотности газов, особенно азота. Оказалось, что литр азота, полученного из воздуха, весил больше литра «химического» азота (полученного путём разложения какого-либо азотистого соединения, например, закиси азота, окиси азота, аммиака, мочевины или селитры) на 1,6 мг (вес первого был равен 1,2521, а второго 1,2505 г). Эта разница была не так уж мала, чтобы можно было её отнести на счет ошибки опыта. К тому же она постоянно повторялась независимо от источника получения химического азота

 

Не придя к разгадке, осенью 1892 года Рэлей в журнале «Nature» опубликовал письмо к учёным, с просьбой дать объяснение тому факту, что в зависимости от способа выделения азота он получал разные величины плотности. Письмо прочли многие учёные, однако никто не был в состоянии ответить на поставленный в нём вопрос.

 

У известного уже в то время английского химика Уильяма Рамзая также не было готового ответа, но он предложил Рэлею свое сотрудничество. Интуиция побудила Рамзая предположить, что азот воздуха содержит примеси неизвестного и более тяжелого газа, а Дьюар обратил внимание Рэлея на описание старинных опытов Кавендиша (которые уже были к этому времени опубликованы)

 

Пытаясь выделить из воздуха скрытую составную часть, каждый из учёных пошел своим путём. Рэлей повторил опыт Кавендиша в увеличенном масштабе и на более высоком техническом уровне. Трансформатор под напряжением 6000 вольт посылал в 50-литровый колокол, заполненный азотом, сноп электрических искр. Специальная турбина создавала в колоколе фонтан брызг раствора щёлочи, поглощающих окислы азота и примесь углекислоты. Оставшийся газ Рэлей высушил, и пропустил через фарфоровую трубку с нагретыми медными опилками, задерживающими остатки кислорода. Опыт длился несколько дней

 

Рамзай воспользовался открытой им способностью нагретого металлического магния поглощать азот, образуя твёрдый нитрид магния. Многократно пропускал он несколько литров азота через собранный им прибор. Через 10 дней объём газа перестал уменьшаться, следовательно, весь азот оказался связанным. Одновременно путём соединения с медью был удален кислород, присутствовавший в качестве примеси к азоту. Этим способом Рамзаю в первом же опыте удалось выделить около 100 см³ нового газа.

 

Итак, был открыт новый элемент. Стало известно, что он тяжелее азота почти в полтора раза и составляет 1/80 часть объёма воздуха. Рамзай при помощи акустических измерений нашёл, что молекула нового газа состоит из одного атома — до этого подобные газы в устойчивом состоянии не встречались. Отсюда следовал очень важный вывод — раз молекула одноатомна, то, очевидно, новый газ представляет собой не сложное химическое соединение, а простое вещество.

 

Много времени затратили Рамзай и Рэлей на изучение его реакционной способности по отношению ко многим химически активным веществам. Но, как и следовало ожидать, пришли к выводу: их газ совершенно недеятелен. Это было ошеломляюще — до той поры не было известно ни одного настолько инертного вещества.

 

Большую роль в изучении нового газа сыграл спектральный анализ. Спектр выделенного из воздуха газа с его характерными оранжевыми, синими и зелёными линиями резко отличался от спектров уже известных газов. Уильям Крукс, один из виднейших спектроскопистов того времени, насчитал в его спектре почти 200 линий. Уровень развития спектрального анализа на то время не дал возможности определить, одному или нескольким элементам принадлежал наблюдаемый спектр. Несколько лет спустя выяснилось, что Рамзай и Рэлей держали в своих руках не одного незнакомца, а нескольких — целую плеяду инертных газов.

 

7 августа 1894 года в Оксфорде, на собрании Британской ассоциации физиков, химиков и естествоиспытателей, было сделано сообщение об открытии нового элемента, который был назван аргоном. В своём докладе Рэлей утверждал, что в каждом кубическом метре воздуха присутствует около 15 г открытого газа (1,288 вес. %). Слишком невероятен был тот факт, что несколько поколений ученых не заметили составной части воздуха, да еще и в количестве целого процента! В считанные дни десятки естествоиспытателей из разных стран проверили опыты Рамзая и Рэлея. Сомнений не оставалось: воздух содержит аргон.

 

Через 10 лет, в 1904 году, Рэлей за исследования плотностей наиболее распространнённых газов и открытие аргона получает Нобелевскую премию по физике, а Рамзай за открытие в атмосфере различных инертных газов — Нобелевскую премию по химии.

Происхождение названия

По предложению доктора Медана (председателя заседания, на котором был сделан доклад об открытии) Рэлей и Рамзай дали новому газу имя «аргон» (от греч. αργός — ленивый, медленный, неактивный). Это название подчеркивало важнейшее свойство элемента — его химическую неактивность.

Распространённость

Во Вселенной

Содержание аргона в мировой материи оценивается приблизительно в 0,02 % по массе.

Аргон (вместе с неоном) наблюдается на некоторых звездах и в планетарных туманностях. В целом его в космосе больше, чем кальция, фосфора, хлора, в то время как на Земле существуют обратные отношения.

Земная кора

Аргон — третий по содержанию после азота и кислорода компонент воздуха, его среднестатистическое содержание в атмосфере Земли составляет 0,934 % по объему и 1,288 % по массе, его запасы в атмосфере оцениваются в 4·1014 т. Аргон — самый распространённый инертный газ в земной атмосфере, в 1 м³ воздуха содержится 9,34 л аргона (для сравнения: в том же объеме воздуха содержится 18,2 см³ неона, 5,2 см³ гелия, 1,1 см³ криптона, 0,09 см³ ксенона).

Содержание аргона в литосфере — 4·10-6 % по массе. В каждом литре морской воды растворено 0,3 см³ аргона, в пресной воде его содержится 5,5·10-5 — 9,7·10-5 %. Его содержание в Мировом океане оценивается в 7,5·1011 т, а в изверженных породах земной оболочки — 16,5·1011 т.

Определение

Качественно аргон обнаруживают с помощью эмиссионного спектрального анализа, основные характеристические линии — 434,80 и 811,53 нм. При количественном определении сопутствующие газы (O2, N2, H2, CO2) связываются специфичными реагентами (Ca, Cu, MnO, CuO, NaOH) или отделяются с помощью поглотителей (например, водных растворов органических и неорганических сульфатов). Отделение от других инертных газов основано на различной адсорбируемости их активным углём. Используются методы анализа, основанные на измерении различных физических свойств (плотности, теплопроводности и др.), а также масс-спектрометрические и хроматографические методы анализа.

Физические свойства

Аргон — одноатомный газ с температурой кипения (при нормальном давлении) −185,9 °C (немного ниже, чем у кислорода, но немного выше, чем у азота). В 100 мл воды при 20 °C растворяется 3,3 мл аргона, в некоторых органических растворителях аргон растворяется значительно лучше, чем в воде.

Химические свойства

Пока известны только 2 химических соединения аргона — гидрофторид аргона и CU(Ar)O, которые существуют при очень низких температурах. Кроме того, аргон образует эксимерные молекулы, то есть молекулы, у которых устойчивы возбужденные электронные состояния и неустойчиво основное состояние. Есть основания считать, что исключительно нестойкое соединение Hg—Ar, образующееся в электрическом разряде, — это подлинно химическое (валентное) соединение. Не исключено, что будут получены другие валентные соединения аргона с фтором и кислородом, которые тоже должны быть крайне неустойчивыми. Например, при электрическом возбуждении смеси аргона и хлора возможна газофазная реакция с образованием ArCl.

Также со многими веществами, между молекулами которых действуют водородные связи (водой, фенолом, гидрохиноном и другими), образует соединения включения (клатраты), где атом аргона, как своего рода «гость», находится в полости, образованной в кристаллической решётке молекулами вещества-хозяина.

Соединение CU(Ar)O получено из соединения урана с углеродом и кислородом CUO. Вероятно существование соединений со связями Ar-Si и Ar-C: FArSiF3 и FArCCH.

Изотопы

Аргон представлен в земной атмосфере тремя стабильными изотопами: 36Ar (0,337 %), 38Ar (0,063 %), 40Ar (99,600 %). Почти вся масса тяжёлого изотопа 40Ar возникла на Земле в результате распада радиоактивного изотопа калия 40K (содержание этого изотопа в изверженных породах в среднем составляет 3,1 г/т). Распад радиоактивного калия идёт по двум направлениям одновременно:

Первый процесс (обычный β-распад) протекает в 88 % случаев и ведет к возникновению стабильного изотопа кальция. Во втором процессе, где участвуют 12 % атомов, происходит электронный захват, в результате чего образуется тяжёлый изотоп аргона. Одна тонна калия, содержащегося в горных породах или водах, в течение года генерирует приблизительно 3100 атомов аргона. Таким образом, в минералах, содержащих калий, постепенно накапливается 40Ar, что позволяет измерять возраст горных пород; калий-аргоновый метод является одним из основных методов ядерной геохронологии.

 

Вероятные источники происхождения изотопов 36Ar и 38Ar — неустойчивые продукты спонтанного деления тяжёлых ядер, а также реакции захвата нейтронов и альфа-частиц ядрами лёгких элементов, содержащихся в урано-ториевых минералах.

 

Подавляющая часть космического аргона состоит из изотопов 36Ar и 38Ar. Это вызвано тем обстоятельством, что калий распространён в космосе примерно в 50 000 раз меньше, чем аргон (на Земле калий преобладает над аргоном в 660 раз). Примечателен произведенный геохимиками подсчёт: вычтя из аргона земной атмосферы радиогенный 40Ar, они получили изотопный состав, очень близкий к составу космического аргона.

Получение

В промышленности аргон получают как побочный продукт при крупномасштабном разделении воздуха на кислород и азот. При температуре −185,9°C аргон конденсируется, при −189,4°С — кристаллизуется.

Применение

Заполненная аргоном и парами ртути газоразрядная трубка

Применения аргона:

  • в аргоновых лазерах
  • в лампах накаливания и при заполнении внутреннего пространства стеклопакетов
  • в качестве защитной среды при сварке (дуговой, лазерной, контактной и т. п.) как металлов, так и неметаллов
  • в качестве плазмаобразователя в плазматронах при сварке и резке
  • в пищевой промышленности аргон зарегистрирован в качестве пищевой добавки E938, в качестве пропеллента и упаковочного газа
  • в качестве огнетушащего вещества в газовых установках пожаротушения

Биологическая роль

Аргон не играет никакой биологической роли.

Физиологическое действие

Инертные газы обладают физиологическим действием, которое проявляется в их наркотическом воздействии на организм. Наркотический эффект от вдыхания аргона проявляется только при барометрическом давлении свыше 0,2 МПа..

 

Содержание аргона в высоких концентрациях во вдыхаемом воздухе может вызвать головокружение, тошноту, рвоту, потерю сознания и смерть от асфиксии (в результате кислородного голодания).

Газ аргон – химические свойства и сфера применения

В переводе с греческого «argon» означает «медленный» или «неактивный». Такое определение газ аргон получил благодаря своим инертным свойствам, позволяющим широко его использовать во многих промышленных и бытовых целях.

 

Химический элемент Ar

Ar – 18-й элемент периодической таблицы Менделеева, относящийся к благородным инертным газам. Данное вещество является третьим после N (азота) и O (кислорода) по содержанию в атмосфере Земли. В обычных условиях – бесцветен, не горюч, не ядовит, без вкуса и запаха.

 

Другие свойства газа аргона:

  • атомная масса: 39,95;
  • содержание в воздухе: 0,9% объема и 1,3% массы;
  • плотность в нормальных условиях: 1,78 кг/м³;
  • температура кипения: -186°С.

 

На рисунке название химического элемента и его свойства

 

Данный элемент был открыт Джоном Стреттом и Уильямом Рамзаем при исследовании состава воздуха. Несовпадение плотности при различных химических испытаниях натолкнуло ученых на мысль, что в атмосфере помимо азота и кислорода присутствует инертный тяжелый газ. В итоге в 1894 г. было сделано заявление об открытии химического элемента, доля которого в каждом кубометре воздуха составляет 15 г.

 

Как добывают аргон

Ar не поддается изменениям в процессе его использования и всегда возвращается в атмосферу. Поэтому ученые считают данный источник неисчерпаемым. Он добывается как сопутствующий продукт при разделении воздуха на кислород и азот посредством низкотемпературной ректификации.

 

Для реализации этого метода применяются специальные воздухоразделительные аппараты, состоящие из колонн высокого, низкого давления и конденсатора-испарителя. В результате процесса ректификации (разделения) получается аргон с небольшими примесями (3-10%) азота и кислорода. Чтобы произвести очистку, примеси убираются с помощью дополнительных химических реакций. Современные технологии позволяют достичь 99,99% чистоты данного продукта.

 

Представлены установки по производству данного химического элемента

 

Хранится и транспортируется газ аргон в стальных баллонах (ГОСТ 949-73), которые имеют серый окрас с полосой и соответствующей надписью зеленого цвета. При этом процесс наполнения емкости должен полностью соответствовать технологическим нормам и правилам безопасности. Детальную информацию о специфике заполнения газовых баллонов можно прочитать в статье: баллоны со сварочной смесью – технические особенности и правила эксплуатации.

 

Где применяется газ аргон

Данный элемент имеет достаточно большую сферу применения. Ниже приведены основные области его использования:

  1. заполнение внутренней полости ламп накаливания и стеклопакетов;
  2. вытеснение влаги и кислорода для долгого хранения пищевых продуктов;
  3. огнетушащее вещество в некоторых системах тушения пожара;
  4. защитная среда при сварочном процессе;
  5. плазмообразующий газ для плазменной сварки и резки.

 

В сварочном производстве он применяется как защитная среда в процессе сварки редких металлов (ниобия, титана, циркония) и их сплавов, легированный сталей разных марок, а также алюминиевых, магниевых и хромоникелевых сплавов. Для черных металлов, как правило, применяют смесь Ar с другими газами – гелием, кислородом, углекислотой и водородом.

 

Вид защитной среды при сварочном процессе, которую создает аргон

 

Являясь тяжелее воздуха, аргоновая струя надежно защищает металл во время сварки. Инертный газ на протяжении длительного времени является защитой для расплавленной и нагретой металлической поверхности. Больше о сварочном процессе с применением аргоновой защитной среды читайте в статье: сварка аргоном – технология и режимы работы оборудования.

 

Меры предосторожности при эксплуатации

Данный химический элемент не представляет абсолютно никакой опасности для окружающей среды, но при большой концентрации оказывает удушающее воздействие на человека. Он нередко скапливается в районе пола в недостаточно проветриваемых помещениях, а при значительном уменьшении содержание кислорода может привести к потере сознания и даже смертельному исходу. Поэтому важно следить за концентрацией кислорода в закрытом помещении, которая не должна падать ниже 19%.

 

Еще мы советуем посмотреть третью часть обучения сварке в защитной среде аргона:

 

Жидкий Ar способен вызвать обморожение участков кожи и повредить слизистую оболочку глаз, поэтому в процессе работы важно использовать спецодежду и защитные очки. При работе в атмосфере этого газа с целью предотвращения удушения необходимо применять изолирующий кислородный прибор или шланговый противогаз.

 

Заправить баллоны аргоном можно в компании «Промтехгаз», где соблюдается правильная технология заправки и предоставляется качественное обслуживание.

Если вы интересуетесь другими техническими газами, информацию можете найти здесь.

химический элемент Аргон Argon — "Химическая продукция"

Что такое Аргон, argon, характеристики, свойства

Аргон — это химический элемент Ar элемент 18-й группы периодической таблицы химических элементов (по устаревшей классификации — элемент главной подгруппы VIII группы) третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 18. Обозначается символом Ar (лат. Argon). Третий по распространённости элемент в земной атмосфере (после азота и кислорода) — 0,93 % по объёму. Простое вещество аргон — инертный одноатомный газ без цвета, вкуса и запаха.

Аргон класс химических элементов

Элемент Ar — относится к группе, классу хим элементов (…)

Элемент Ar свойство химического элемента Аргон Argon

Основные характеристики и свойства элемента Ar…, его параметры.

формула химического элемента Аргон Argon

Химическая формула Аргона:

Атомы Аргон Argon химических элементов

Атомы Argon хим. элемента

Argon Аргон ядро строение

Строение ядра химического элемента Argon — Ar,

История открытия Аргон Argon

Открытие элемента Argon начинается в 1785 году, когда английский физик и химик Генри Кавендиш, изучая состав воздуха, решил установить, весь ли азот воздуха окисляется. В течение многих недель он подвергал воздействию электрического разряда смесь воздуха с кислородом в U-образных трубках, в результате чего в них образовывались всё новые порции бурых оксидов азота, которые исследователь периодически растворял в щёлочи. Через некоторое время образование окислов прекратилось, но после связывания оставшегося кислорода остался пузырёк газа, объём которого не уменьшался при длительном воздействии электрических разрядов в присутствии кислорода. Кавендиш оценил объём оставшегося газового пузыря в 1/120 от первоначального объёма воздуха. Разгадать загадку пузыря Кавендиш не смог, поэтому прекратил своё исследование и даже не опубликовал его результатов. Только спустя много лет английский физик Джеймс Максвелл собрал и опубликовал неизданные рукописи и лабораторные записки Кавендиша.

Дальнейшая история открытия аргона связана с именем Рэлея, который несколько лет посвятил исследованиям плотности газов, особенно азота. Оказалось, что литр азота, полученного из воздуха, весил больше литра «химического» азота (полученного путём разложения какого-либо азотистого соединения, например, закиси азота, окиси азота, аммиака, мочевины или селитры) на 1,6 мг (вес первого был равен 1,2521, а второго — 1,2505 г). Эта разница была не так уж мала, чтобы можно было её отнести на счет ошибки опыта. К тому же она постоянно повторялась независимо от источника получения химического азота.

Не придя к разгадке, осенью 1892 года Рэлей в журнале «Nature» опубликовал письмо к учёным, с просьбой дать объяснение тому факту, что в зависимости от способа выделения азота он получал разные величины плотности. Письмо прочли многие учёные, однако никто не был в состоянии ответить на поставленный в нём вопрос.

У известного уже в то время английского химика Уильяма Рамзая также не было готового ответа, но он предложил Рэлею своё сотрудничество. Интуиция побудила Рамзая предположить, что азот воздуха содержит примеси неизвестного и более тяжёлого газа, а Дьюар обратил внимание Рэлея на описание старинных опытов Кавендиша (которые уже были к этому времени опубликованы).

Пытаясь выделить из воздуха скрытую составную часть, каждый из учёных пошёл своим путём. Рэлей повторил опыт Кавендиша в увеличенном масштабе и на более высоком техническом уровне. Трансформатор под напряжением 6000 вольт посылал в 50-литровый колокол, заполненный азотом, сноп электрических искр. Специальная турбина создавала в колоколе фонтан брызг раствора щёлочи, поглощающих окислы азота и примесь углекислоты. Оставшийся газ Рэлей высушил, и пропустил через фарфоровую трубку с нагретыми медными опилками, задерживающими остатки кислорода. Опыт длился несколько дней.

Рамзай воспользовался открытой им способностью нагретого металлического магния поглощать азот, образуя твёрдый нитрид магния. Многократно пропускал он несколько литров азота через собранный им прибор. Через 10 дней объём газа перестал уменьшаться, следовательно, весь азот оказался связанным. Одновременно путём соединения с медью был удалён кислород, присутствовавший в качестве примеси к азоту. Этим способом Рамзаю в первом же опыте удалось выделить около 100 см³ нового газа.

Итак, был открыт новый элемент. Стало известно, что он тяжелее азота почти в полтора раза и составляет 1/80 часть объёма воздуха. Рамзай при помощи акустических измерений нашёл, что молекула нового газа состоит из одного атома — до этого подобные газы в устойчивом состоянии не встречались. Отсюда следовал очень важный вывод — раз молекула одноатомна, то, очевидно, новый газ представляет собой не сложное химическое соединение, а простое вещество.

Много времени затратили Рамзай и Рэлей на изучение его реакционной способности по отношению ко многим химически активным веществам. Но, как и следовало ожидать, пришли к выводу: их газ совершенно недеятелен. Это было ошеломляюще — до той поры не было известно ни одного настолько инертного вещества.\

Спектральный анализ, спектр известных газов

Большую роль в изучении нового газа сыграл спектральный анализ. Спектр выделенного из воздуха газа с его характерными оранжевыми, синими и зелёными линиями резко отличался от спектров уже известных газов. Уильям Крукс, один из виднейших спектроскопистов того времени, насчитал в его спектре почти 200 линий. Уровень развития спектрального анализа на то время не дал возможности определить, одному или нескольким элементам принадлежал наблюдаемый спектр. Несколько лет спустя выяснилось, что Рамзай и Рэлей держали в своих руках не одного незнакомца, а нескольких — целую плеяду инертных газов.

Сообщение об открытии нового газа аргона

7 августа 1894 года в Оксфорде, на собрании Британской ассоциации физиков, химиков и естествоиспытателей, было сделано сообщение об открытии нового элемента, который был назван аргоном. В своём докладе Рэлей утверждал, что в каждом кубическом метре воздуха присутствует около 15 г открытого газа (1,288 вес. %). Слишком невероятен был тот факт, что несколько поколений учёных не заметили составной части воздуха, да ещё и в количестве целого процента! В считанные дни десятки естествоиспытателей из разных стран проверили опыты Рамзая и Рэлея. Сомнений не оставалось: воздух содержит аргон.

Через 10 лет, в 1904 году, Рэлей за исследования плотностей наиболее распространённых газов и открытие аргона получает Нобелевскую премию по физике, а Рамзай за открытие в атмосфере различных инертных газов — Нобелевскую премию по химии

Аргон Argon происхождение названия

Откуда произошло название Argon  — по предложению доктора Медана (председателя заседания, на котором был сделан доклад об открытии) Рэлей и Рамзай дали новому газу имя «аргон» (от др.-греч. ἀργός — ленивый, медленный, неактивный). Это название подчёркивало важнейшее свойство элемента — его химическую неактивность

Распространённость Аргон Argon

Как любой хим. элемент имеет свою распространенность в природе, Ar …

Получение Аргон Argon

Argon — получение элемента

Физические свойства Аргон Argon

Основные свойства Argon — Аргон — одноатомный газ с температурой кипения (при нормальном давлении) −185,9 °C (немного ниже, чем у кислорода, но немного выше, чем у азота). В 100 мл воды при 20 °C растворяется 3,3 мл аргона, в некоторых органических растворителях аргон растворяется значительно лучше, чем в воде. Плотность при нормальных условиях составляет 1,7839 кг/м3

Изотопы Argon Аргон

Наличие и определение изотопов Argon — представлен в земной атмосфере тремя стабильными изотопами: 36Ar (0,337 %), 38Ar (0,063 %), 40Ar (99,600 %). Почти вся масса тяжёлого изотопа 40Ar возникла на Земле в результате распада радиоактивного изотопа калия 40K (содержание этого изотопа в изверженных породах в среднем составляет 3,1 г/т). Распад радиоактивного калия идёт по двум направлениям одновременно:

{\displaystyle \mathrm {{}_{19}^{40}K} \rightarrow \mathrm {{}_{20}^{40}Ca} +e^{-}+{\bar {\nu }}_{e}} {\mathrm {{}_{{19}}^{{40}}K}}\rightarrow {\mathrm {{}_{{20}}^{{40}}Ca}}+e^{-}+{\bar {\nu }}_{e}

{\displaystyle \mathrm {{}_{19}^{40}K} +e^{-}\rightarrow \mathrm {{}_{18}^{40}Ar} +\nu _{e}+\gamma } {\mathrm {{}_{{19}}^{{40}}K}}+e^{-}\rightarrow {\mathrm {{}_{{18}}^{{40}}Ar}}+\nu _{e}+\gamma

Первый процесс (обычный β-распад) протекает в 88 % случаев и ведёт к возникновению стабильного изотопа кальция. Во втором процессе, где участвуют 12 % атомов, происходит электронный захват, в результате чего образуется тяжёлый изотоп аргона. Одна тонна калия, содержащегося в горных породах или водах, в течение года генерирует приблизительно 3100 атомов аргона. Таким образом, в минералах, содержащих калий, постепенно накапливается 40Ar, что позволяет измерять возраст горных пород; калий-аргоновый метод является одним из основных методов ядерной геохронологии.

Вероятные источники происхождения изотопов 36Ar и 38Ar — неустойчивые продукты спонтанного деления тяжёлых ядер, а также реакции захвата нейтронов и альфа-частиц ядрами лёгких элементов, содержащихся в урано-ториевых минералах.

Подавляющая часть космического аргона состоит из изотопов 36Ar и 38Ar. Это вызвано тем обстоятельством, что калий распространён в космосе примерно в 50 000 раз меньше, чем аргон (на Земле калий преобладает над аргоном в 660 раз). Примечателен произведенный геохимиками подсчёт: вычтя из аргона земной атмосферы радиогенный 40Ar, они получили изотопный состав, очень близкий к составу космического аргона.

Симво
нуклида
Z ( p ) N( n ) Масса
изотопа( а. е. м. )
Избыток
массы( кэВ )
Период
полураспада (T 1/2 )
Спин и
чётность ядра
Распространённость
в природе(%)
Энергия возбуждения (кэВ)
30 Ar 18 12 30,021560(320)# 20080(300)# < 20 нс 0+
31 Ar 18 13 31,012120(220)# 11290(210)# 14,4(6) мс 5/2( + #)
32 Ar 18 14 31,9976380(19) −2200,2(18) 98(2) мс 0+
32 Ar m 5600(100)# 3400(100)# ? 5
33 Ar 18 15 32,9899257(5) −9384,1(4) 173,0(20) мс 1/2 +
34 Ar 18 16 33,9802712(4) −18377,2(4) 845(3) мс 0+
35 Ar 18 17 34,9752576(8) −23047,4(7) 1,775(4) с 3/2 +
36 Ar 18 18 35,967545106(29) −30231,540(27) стабилен 0+ 0,3365(30)
37 Ar 18 19 36,96677632(22) −30947,66(21) 35,04(4) дня 3/2 +
38 Ar 18 20 37,9627324(4) −34714,6(3) стабилен 0+ 0,0632(5)
39 Ar 18 21 38,964313(5) −33242(5) 269(3) лет 7/2
40 Ar 18 22 39,9623831225(29) −35039,8960(27) стабилен 0+ 99,6003(30)
41 Ar 18 23 40,9645006(4) −33067,5(3) 109,61(4) мин 7/2
42 Ar 18 24 41,963046(6) −34423(6) 32,9(11) лет 0+
43 Ar 18 25 42,965636(6) −32010(5) 5,37(6) мин (5/2 )
44 Ar 18 26 43,9649240(17) −32673,1(16) 11,87(5) мин 0+
45 Ar 18 27 44,9680400(6) −29770,6(5) 21,48(15) с (1,3,5)/2
46 Ar 18 28 45,968090(40) −29720(40) 8,4(6) с 0+
47 Ar 18 29 46,972190(110) −25910(100) 580(120) мс 3/2 #
48 Ar 18 30 47,974540(320)# −23720(300)# 500# мс 0+
49 Ar 18 31 48,980520(540)# −18150(500)# 170(50) мс 3/2 #
50 Ar 18 32 49,984430(750)# −14500(700)# 85(30) мс 0+
51 Ar 18 33 50,991630(750)# −7800(700)# 60(>200 нс)# мс 3/2 #
52 Ar 18 34 51,996780(970)# −3000(900)# 10# мс 0+
53 Ar 18 35 53,004940(1070)# 4600(1000)# 3# мс 5/2 #

Ar свойства изотопов Аргон Argon

Химические свойства Аргон Argon

Определение химических свойств Argon —

Пока известны только 2 химических соединения аргона — гидрофторид аргона и CU(Ar)O, которые существуют при очень низких температурах. Кроме того, аргон образует эксимерные молекулы, то есть молекулы, у которых устойчивы возбуждённые электронные состояния и неустойчиво основное состояние. Есть основания считать, что исключительно нестойкое соединение Hg—Ar, образующееся в электрическом разряде, — это подлинно химическое (валентное) соединение. Не исключено, что будут получены другие валентные соединения аргона с фтором и кислородом, которые тоже должны быть крайне неустойчивыми. Например, при электрическом возбуждении смеси аргона и хлора возможна газофазная реакция с образованием ArCl. Также со многими веществами, между молекулами которых действуют водородные связи (водой, фенолом, гидрохиноном и другими), образует соединения включения (клатраты), где атом аргона, как своего рода «гость», находится в полости, образованной в кристаллической решётке молекулами вещества-хозяина, например, Ar·6h3O.

Соединение CU(Ar)O получено из соединения урана с углеродом и кислородом CUO[9]. Вероятно существование соединений со связями Ar-Si и Ar-C: FArSiF3 и FArCCH.

Меры предосторожности Аргон Argon

Внимание! Внимательно ознакомьтесь с мерами безопасности при работе с Argon

Стоимость Аргон Argon

Рыночная стоимость Ar, цена Аргон Argon

Примечания

Список примечаний и ссылок на различные материалы про хим. элемент Ar

Аргон: свойства, характеристика, использование

АРГОН, Ar (лат. Argon * а. argon; н. Argon; ф. argon; и. argon), — химический элемент главной подгруппы VIII группы периодической системы Менделеева, относится к инертным газам, атомный номер 18, атомная масса 39,948. Состоит из трёх стабильных изотопов, основной — 40Ar (99,600%). Выделен из воздуха в 1894 английскими учёными Дж. Рэлеем и У. Рамзаем.

Аргон в природе

В природе аргон существует только в свободном виде. При обычных условиях аргон — газ без цвета, запаха и вкуса. Твёрдый аргон кристаллизуется в кубические сингонии. Плотность аргона 1,78 кг/м3, t плавления — 189,3°С, t кипения — 185,9°С, критическое давление 48 МПа, критическая температура — 122,44°С. Первый потенциал ионизации 15,69 эВ. Атомный радиус 0,188 нм (1,88Е).

Свойства аргона

Химические соединения не получены (известны лишь соединения включения). В 1 л дистиллированной воды при нормальных условиях растворяется 51,9 см3 аргона. Образует кристаллогидраты типа Ar • 6Н2О. Весовой кларк в земной коре 4 • 10-4; содержание в атмосфере 0,9325 объёмных % (6,5 • 1016 кг), в изверженных породах 2,2 • 10-5 см3/г, в океанической воде 0,336 см3/л. В мантии продуцировано 5,3• 1019 кг 40Ar, средняя скорость накопления 40Ar в земной коре 2 •107 кг/год.

Из минералов атомы аргона мигрируют по дислокациям в зоны нарушения кристаллической структуры и затем по микротрещинам и порам поступают в пластовые воды, нефтяные и газовые залежи. На измерении отношения содержаний 40Ar/40K в калийсодержащих минералах основан метод определения возраста геологических объектов. Аргоновым методом определяют возрасты изверженных (по слюдам, амфиболам), осадочных (по глауконитам, сильвинам), метаморфизованных пород, для которых также с известным приближением даётся возраст метаморфизма. Разработан активационный метод датирования, основанный на измерении отношения 40Ar/39Ar.

Получение и применение аргона

В промышленности аргон получают в процессе разделения воздуха при глубоком охлаждении. Возможно получение аргона из продувочных газов колонн синтеза аммиака. Отделение аргона от других инертных газов наиболее полно осуществляется газохроматографическим методом.

Аргон используется при термической обработке легко окисляющихся металлов. В защитной атмосфере аргона проводят сварку и резку редких и цветных металлов, плавку титана, вольфрама, циркония и др., выращивают кристаллы полупроводниковых материалов. Радиоактивный изотоп (37Ar) применяют для контроля вентиляционных систем.

Аргон (Ar2) по ТУ 6-21-12-94, ГОСТ 10157-70

измерительные приборы, аналитическая аппаратура, лабораторное оборудование, расходные материалы

Данное оборудование указано в следующих разделах каталога:

Газообразный и жидкий аргон получают из воздуха и остаточных газов аммиачных производств.

Газообразный и жидкий аргон используется в качестве защитной среды при сварке, резке и плавке активных и редких металлов и сплавов на их основе, алюминия, алюминиевых и магниевых сплавов, нержавеющих хромоникелевых жаропрочных сплавов и легированных сталей различных марок, а также при рафинировании металлов в металлургии. В аналитической химии чистый аргон используется в качестве газа-носителя в эмиссионной спектрометрии, ICP-спектрометрии, масс-спектрометрии и т.д.

Аргон – жидкость при температуре -185,9 °С, при нормальных условиях – газ.

Не оказывает опасного воздействия на окружающую среду. Газообразный аргон тяжелее воздуха и может накапливаться в слабо проветриваемых помещениях у пола. При этом снижается содержание кислорода в воздухе, что вызывает кислородную недостаточность и удушье.

Жидкий аргон – низкокипящая жидкость, которая может вызвать обморожение кожи и поражение слизистой оболочки глаз.

Технические характеристики

Техническое наименование Аргон газообразный
Химическая формула Ar
Номер по списку OOН 1006
Класс опасности при перевозках 2.1

Физические свойства

Физическое состояние при нормальных условиях газ
Плотность, при нормальных условиях (101,3 кПа, 20 °C), кг/м³ 1,66
Температура кипения, °С при 101,3 кПа -185,8
Температура тройной точки и равновесное ей давление °С, мПА -189,2 (0,688)
Растворимость в воде незначительна
Пожаро- и взрывоопасность пожаро-взрывобезопасен

 

Стабильность и химическая активность Стабильность стабильный
Реакционная способность инертный газ
Температура воспламенения, °С с воздухом -
с кислородом -
Пределы воспламенения, объемные доли, % газа с воздухом -
с кислородом -
Опасность для человека ПДК, мг/м³ -
Токсическое воздействие не токсичен
Экологическая опасность не оказывает влияния на окружающую среду
Средства пожаротушения применимы любые огнетушащие средства

Технические требования

Аргон газообразный. Сорт высший ГОСТ 10157-79 с изм. 1, 2, 3

Объемная доля аргона не менее 99,993%
Объемная доля кислорода не более 0,0007%
Объемная доля азота не более 0,005%
Содержание влаги при норм. усл. не более 0,0009%
Углеродосодержащие не более 0,0005%
Давление при стандартных условиях не менее 15,0 МПа

Аргон газообразный высокой чистоты ТУ 6-21-12-94

Объемная доля аргона не менее 99,998%
Объемная доля кислорода не более 0,0002%
Объемная доля азота не более 0,001%
Объемная доля водяного пара не более 0,0003%
Объемная доля СO2 не более 0,00002%
Объемная доля метана не более 0,0001%
Объемная доля водорода не более 0,0002%
Давление при стандартных условиях не менее 15,0 МПа

Аргон жидкий Сорт высший ГОСТ 10157-79 с изм. 1, 2, 3

Объемная доля азота не более 0,005%
Объемная доля кислорода не более 0,0007%
Содержание влаги при норм. усл. не более 0,0009%
Углеродосодержащие не норм.

Газообразный аргон транспортируется в стальных баллонах (ГОСТ 949-73) серого или черного цвета под давлением 150 кгс/см². Для перевозок автомобильным транспортом баллоны среднего объема помещают в металлические специальные контейнеры (поддоны).

Жидкий аргон заливают в специальные цистерны с порошковой, вакуумно-порошковой или вакуумно-многослойной изоляцией, предназначенной для перевозок жидкого аргона.

php|sql engine by ivan
design by p.s.
html|php coding by fish

№18 Аргон

Таблица
  ^   =>>
v
 


Джон Уильям Стретт (Реллей) (1842-1919), английский физик, лауреат Нобелевской премии 1904 года.

Поделиться в


фото сайта periodictable.ru

На заметку:
Качественная заправка аргоном баллонов в Москве от компании "ГАЗКОМ"

История открытия:

Первый вклад в открытие аргона внес английский физик и химик Генри Кавендиш. Изучая в 1785 году окисление атмосферного азота кислородом под действием электрического разряда, он обнаружил, что остается небольшой объем газа, не подвергающегося окислению. Однако он не нашел объяснения этому факту. В 1892 году английский физик Дж. Рэлей обнаружил небольшое (всего на 0,13%) превышение плотности азота, выделяемого из воздуха, над плотностью азота, получаемого химическим путем. Английский физик У. Рамзаем предположил, что причиной этого может быть примесь еще неизвестного более тяжелого газа и предложил выделить его. Ему и Дж. Рэлею в 1894 году удалось выделить этот газ и спектральным анализом доказать, что это новый химический элемент. Дальнейшие исследования показали полную химическую инертность этого вещества. Благодаря своей химической инертности (а это был первый из открытых инертных газов), новый элемент и получил свое название Аргон (греч. аrgos - неактивный, ленивый).

Нахождение в природе и получение:

В атмосферном воздухе содержится 0,93% аргона по объему (9,34 л в 1м3), его запасы в атмосфере оцениваются в 4·1014 т. Среди других изотопов преобладает aргон-40, постоянно образующийся в ходе ядерной реакции ("электронный захват") из природного изотопа калия: 40K + e = 40Ar + ne
В промышленности аргон получают как побочный продукт при крупномасштабном разделении воздуха на кислород и азот. При температуре -185,9°C аргон конденсируется, при -189,4°С - кристаллизуется.

Физические свойства:

Бесцветный, без запаха газ. Температура кипения аргона (при нормальном давлении) -185,9°C, температура плавления -189,4°C. Плотность при нормальных условиях 1,784 кг/м3. В 100 мл воды при 20°C растворяется около 3,3 мл аргона. в некоторых органических растворителях аргон растворяется значительно лучше, чем в воде. При пропускании электрического разряда через стеклянную трубку, заполненную аргоном, наблюдается сине-голубое свечение.

Химические свойства:

Аргон химически инертен, при обычных условиях химических соединений не образует. Однако со многими веществами, между молекулами которых действуют водородные связи (водой, фенолом, гидрохиноном и другими), образует соединения включения (клатраты), где атом аргона, как своего рода "гость", находится в полости, образованной в кристаллической решетке молекулами вещества-хозяина.
При сверхнизких температурах спектральными методами зафиксировано образование некоторых чрезвычайно неустойчивых молекул, содержащих аргон.
Установлено существование так называемых эксимерных молекул, содержащих аргон. На переходах этих молекул из метастабильного состояния в несвязанное генерируется лазерное излучение.

Важнейшие соединения:

Клатрат Ar*6H2O - соединение включения, температура разложения Аr·6Н2О при 101325 Па 42,0°С.

Гидрофторид аргона HArF - первое открытое, и пока единственное известное на 2013 г. химическое соединение аргона с электронейтральной молекулой. Получен при УФ-облучении смеси аргона и фтороводорода при 8K. Нестоек и распадается уже при 17 К на фтороводород и аргон.

CU(Ar)O - образование такого соединение при 3 К предполагается на основании спектральных данных. В этой молекуле уран должен быть связан с тремя другими атомами - углеродом, аргоном и кислородом.

Применение:

Аргон широко используют для создания инертной и защитной атмосферы, прежде всего при термической обработке легко окисляющихся металлов (аргоновая плавка, аргоновая сварка и другие). В атмосфере аргона получают кристаллы полупроводников и многие другие сверхчистые материалы. Аргоном часто заполняют электрические лампочки (для замедления испарения вольфрама со спирали). Это же его свойство используется в аргоновой сварке, которая позволяет соединять алюминиевые и дюралевые детали.

Аргон (в смеси с неоном, парами ртути) применяют для наполнения газоразрядных трубок (сине-голубое свечение), что используется в светящейся рекламе. Также аргон используется в аргоновых лазерах.

В геохронологии по определению соотношения изотопов 40Ar/40К устанавливают возраст минералов.

Мавлянова Н.Х., Жудин С.М.
ТюмГУ, 501 группа, 2013 г.


Источники:
    Аргон /WebElements.narod.ru/ URL: http://webelements.narod.ru/elements/Ar.htm (дата обращения: 8.07.13).
    Аргон (элемент) // Википедия. URL: http://ru.wikipedia.org/wiki/Аргон (дата обращения: 8.07.2013).

Названия химических элементов

Названия химических элементов

Названия химических элементов

Z Символ Name Название
1 H Hydrogen Водород
2 He Helium Гелий
3 Li Lithium Литий
4 Be Beryllium Бериллий
5 B Boron Бор
6 C Carbon Углерод
7 N Nitrogen Азот
8 O Oxygen Кислород
9 F Fluorine Фтор
10 Ne Neon Неон
11 Na Sodium Натрий
12 Mg Magnesium Магний
13 Al Aluminium Алюминий
14 Si Silicon Кремний
15 P Phosphorus Фосфор
16 S Sulfur Сера
17 Cl Chlorine Хлор
18 Ar Argon Аргон
19 K Potassium Калий
20 Ca Calcium Кальций
21 Sc Scandium Скандий
22 Ti Titanium Титан
23 V Vanadium Ванадий
24 Cr Chromium Хром
25 Mn Manganese Марганец
26 Fe Iron Железо
27 Co Cobalt Кобальт
28 Ni Nickel Никель
29 Cu Copper Медь
30 Zn Zinc Цинк
31 Ga Gallium Галлий
32 Ge Germanium Германий
33 As Arsenic Мышьяк
34 Se Selenium Селен
35 Br Bromine Бром
36 Kr Krypton Криптон
37 Rb Rubidium Рубидий
38 Sr Strontium Стронций
39 Y Yttrium Иттрий
40 Zr Zirconium Цирконий
41 Nb Niobium Ниобий
42 Mo Molybdenum Молибден
43 Tc Technetium Технеций
44 Ru Ruthenium Рутений
45 Rh Rhodium Родий
46 Pd Palladium Палладий
47 Ag Silver Серебро
48 Cd Cadmium Кадмий
49 In Indium Индий
50 Sn Tin Олово
51 Sb Antimony Сурьма
52 Te Tellurium Теллур
53 I Iodine Иод
54 Xe Xenon Ксенон
55 Cs Caesium Цезий
56 Ba Barium Барий
57 La Lanthanum Лантан
58 Ce Cerium Церий
59 Pr Praseodymium Празеодим
60 Nd Neodymium Неодим
61 Pm Promethium Прометий
62 Sm Samarium Самарий
63 Eu Europium Европий
64 Gd Gadolinium Гадолиний
65 Tb Terbium Тербий
66 Dy Dysprosium Диспрозий
67 Ho Holmium Гольмий
68 Er Erbium Эрбий
69 Tm Thulium Тулий
70 Yb Ytterbium Иттербий
71 Lu Lutetium Лютеций
72 Hf Hafnium Гафний
73 Ta Tantalum Тантал
74 W Tungsten Вольфрам
75 Re Rhenium Рений
76 Os Osmium Осмий
77 Ir Iridium Иридий
78 Pt Platinum Платина
79 Au Gold Золото
80 Hg Mercury Ртуть
81 Tl Thallium Таллий
82 Pb Lead Свинец
83 Bi Bismuth Висмут
84 Po Polonium Полоний
85 At Astatine Астат
86 Rn Radon Радон
87 Fr Francium Франций
88 Ra Radium Радий
89 Ac Actinium Актиний
90 Th Thorium Торий
91 Pa Protactinium Протактиний
92 U Uranium Уран
93 Np Neptunium Нептуний
94 Pu Plutonium Плутоний
95 Am Americium Америций
96 Cm Curium Кюрий
97 Bk Berkelium Берклий
98 Cf Californium Калифорний
99 Es Einsteinium Эйнштейний
100 Fm Fermium Фермий
101 Md Mendelevium Менделевий
102 No Nobelium Нобелий
103 Lr Lawrencium Лоуренсий
104 Rf Rutherfordium Резерфордий
105 Db Dubnium Дубний
106 Sg Seaborgium Сиборгий
107 Bh Bohrium Борий
108 Hs Hassium Хассий
109 Mt Meitnerium Мейтнерий
110 Ds Darmstadtium Дармштадтий
111 Rg Roentgenium Рентгений
112 Cn Copernicium Коперниций
113 Nh Nihonium Нихоний
114 Fl Flerovium Флеровий
115 Mc Moscovium Московий
116 Lv Livermorium Ливерморий
117 Ts Tennessine Теннессин
118 Og Oganesson Оганессон

https://iupac.org/what-we-do/periodic-table-of-elements/

90 000 Аргон - Medianauka.pl

Основные свойства элемента

Element symbol:
Atomic number:
Atomic weight:
Chemical nature:
State of aggregation:
Valence:
Electronegativity:

Configuration


Radius of атом:
Год открытия:
Температура плавления:
Температура кипения:
Период:
Группа: Блок:

6 Блок
Аргон © Scanrail-stock.adobe.com

Аргон (Ar) — химический элемент с атомным номером 18, относящийся к группе гелия, идеальный газ.

Возникновение

Аргон встречается в атмосфере Земли. Его содержание составляет 1%.

Свойства

Этот элемент имеет следующие свойства:

  • идеальный газ,
  • химически инертен,
  • бесцветный,
  • тяжелее воздуха,
  • неметалл,
  • излучает синий свет в лампах с высоким напряжением.

Получить

Коммерчески аргон получают перегонкой воздуха. Этот процесс производит жидкий азот, кислород и аргон.

Использовать

Применение аргона в промышленности, науке, технике и медицине заключается в следующем:

  • производство ламп накаливания и люминесцентных ламп,
  • создать защитную инертную атмосферу,
  • в процессе сварки,
  • защита от окисления открытых сосудов с вином.
Трубки с инертным газом возбуждаются высоким напряжением. Слева направо: гелий, неон, аргон, криптон и ксенон. Каждая трубка излучает разный цвет и интенсивность. © Ким — stock.adobe.com Периодическая таблица

Перейти к активной версии нашей таблицы Менделеева

Положение элемента в периодической таблице

Ла

Се

Пр

Н/Д

вечера

См

ЕС

гд

Тб

Дай

Хо

Er

Тм

Ыб

Лу

Ас

Па

У

Например,

Пу

Ам

См

Бк

КФ

Эс

ФМ

Мд

Лр

© медианаука.пл, 2020-05-19, ART-3800


.

Аргон - Изобретения и Открытия

Благородный газ, химически инертный химический элемент с символом Ar (латинское αργόν, что означает неактивный).

Является одним из компонентов воздуха, присутствует в количестве 0,93% по объему, биологического значения не имеет.
. Получают фракционной перегонкой жидкого воздуха.
Первый, кто не открыл аргон, но заметил, что при пропускании электрических искр через газ, состоящий из азота и кислорода, в баллоне оставалось около 1/135 первоначального объема газа, остаток которого он не смог определить что это было Британский химик и физик Генри Кавендиш...

Аргон был выделен и идентифицирован в 1894 году: английский физик, лауреат Нобелевской премии по физике 1904 года, которую он получил за исследование плотности газа и открытие аргона, Джон Уильям Струтт - более известный как лорд Рэлей, лауреат Нобелевской премии по химии в 1904 г. за открытие благородных газов в воздухе шотландский химик сэр Уильям Рамзи.
Они сделали это, удалив из воздуха кислород, азот, углекислый газ и водяной пар.

30 ноября 1894 года лорд Кельвин официально объявил об открытии нового компонента воздуха.

Сжижение аргона (и его затвердевание) впервые было осуществлено польским физиком и химиком Каролем Ольшевским, профессором Ягеллонского университета в Кракове, в 1895 году, после трагической гибели его сподвижника Зигмунта Врублевского.

Аргон практически нереакционноспособен, поэтому является одним из основных газов (кроме углекислого газа), используемых при сварке в защитной атмосфере.
Применяется как инертный наполнитель мощных ламп накаливания, люминесцентных ламп (при использовании в неоновых лампах дает синий свет) и электронных ламп.

Кроме того, благодаря меньшей, чем у воздуха, теплопроводности, аналогично криптону, используется для заполнения стеклопакетов в современных окнах. Жесткие диски компьютеров заполнены аргоном, чтобы уменьшить износ пластин и считывающих головок.

В качестве активной среды в аргоновом лазере

используются ионы

Ar + аргон.

свойств, получение, применение и соединения аргона - Вопрос - Общая химия

свойства, получение, применение и соединения аргона - Вопрос - Общая химия - Bryk.pl гражданские права

Документы

Тезисы чтения

Галстуки

Вопросы

Задайте вопрос

Нужна помощь?

Общая химия (Химия)

Топ 90 018 за предыдущий месяц

.

Аргон (Ar) и его смеси

Аргон (Ar) и его смеси – Технические газы/газовые баллоны

Эй! Я ТомБот.
Чем я могу вам помочь?

Щелкните значок и задайте мне вопрос.

Магазин не будет работать корректно в случае, если куки отключены.

В вашем браузере отключен JavaScript. Чтобы в полной мере пользоваться нашим веб-сайтом, убедитесь, что в вашем браузере включен JavaScript.

РОЛЬ АРГОНА ПРИ СВАРКЕ

Область применения аргона (Ar) очень широка. Этот газ используется, в частности, в в качестве покрытия при сварке, а также для промывки расплавленных металлов (для удаления пористости отливок).

Аргон чаще всего используется при сварке TIG и MIG.Идеально подходит для сварки всех металлов (кроме углеродистых сталей). Его инертные свойства полезны, когда свариваемый материал подвергается воздействию кислорода или азота. Аргон не только защищает зону сварки от погодных условий, но и повышает стабильность процесса сварки и скорость сварочных работ. И самое главное – аргон позволяет получать сварные швы с отличными механическими свойствами.

Чтобы узнать больше об Argon, посетите Зону знаний Tomsystem >>

Купить у

Варианты приобретения

Объем цилиндра / размер

.

Газовые регуляторы - регуляторы для аргона, СО2, ацетилена, кислорода

Настройки файлов cookie

Здесь вы можете определить свои предпочтения в отношении использования нами файлов cookie.

Требуется для работы страницы

Эти файлы cookie необходимы для работы нашего веб-сайта, поэтому вы не можете их отключить.

Функциональный

Эти файлы позволяют использовать другие функции сайта (кроме необходимых для его работы).Включив их, вы получите доступ ко всем функциям веб-сайта.

Аналитический

Эти файлы позволяют нам анализировать наш интернет-магазин, что может способствовать его лучшему функционированию и адаптации к потребностям Пользователей.

Поставщики аналитического программного обеспечения

Эти файлы используются поставщиком программного обеспечения, под которым работает наш магазин.Они не объединяются с другими данными, введенными вами в магазине. Целью сбора этих файлов является выполнение анализа, который будет способствовать разработке программного обеспечения. Вы можете прочитать больше об этом в политике использования файлов cookie Shoper.

Маркетинг

Благодаря этим файлам мы можем проводить маркетинговые мероприятия.

.

Когда сварка аргоном, а когда СО2?

Дуговая сварка выполняется сваркой в ​​среде инертного газа. К защитным газам относятся аргон (Ar) и двуокись углерода (CO2). Их целью является защита места сварки от атмосферных воздействий, а точнее от таких газов, как кислород, азот и водяной пар. Также они влияют на лучшую стабильность процесса сварки и скорость выполняемых работ. Они обеспечивают более глубокое проникновение, ограничивая при этом разбрызгивание.

В этом посте мы расскажем, когда выбирать аргон для сварки, а в каких случаях лучше подходит углекислый газ.Мы также представим особенности сварки с использованием этих защитных газов и дополнительных сварочных материалов, которые могут быть полезны в отдельных случаях.

Аргонная сварка

Аргон – инертный газ, а это значит, что он не окисляется. По этой причине он используется везде, где свариваемый материал может подвергаться воздействию кислорода или азота. Используется для сварки, например, кислотоупорные стали, алюминий и титан .На практике он подходит для сварки всех металлов, кроме углеродистых сталей. Используется в методах TIG и MIG.

Аргон обеспечивает сварку с хорошими механическими свойствами. Высокая стабильность и простота зажигания дуги обусловлены высоким потенциалом ионизации. В результате глубокого плавления получаются узкие и чистые швы. Это также позволяет уменьшить количество брызг. Кроме того, аргон обеспечивает хорошее удерживание компонентов сплава и способствует высокой производительности сварки.

Сварка двуокисью углерода

Двуокись углерода является активным газом, который в основном используется при сварке черных сталей (в основном низкоуглеродистых сталей). Обычно встречается в составе сварочных составов MAG.

Обеспечивает хорошее охлаждение сварочной горелки, предотвращая ее перегрев. Однако необходимо помнить, что сварка в СО2-защите способствует образованию брызг металла, большого количества дыма и сварочной пыли, а также приводит к так называемомупримерзание редуктора при сварке. По этой причине рекомендуется использовать газовый обогреватель. Преимуществом CO2 является гораздо более низкая стоимость по сравнению с аргоном. С другой стороны, однако, он обеспечивает сварные швы с несколько худшими механическими свойствами.

.

Аргоновые краски - Cefol - самоклеящиеся пленки

Настройки файлов cookie

Здесь вы можете определить свои предпочтения в отношении использования нами файлов cookie.

Требуется для работы страницы

Эти файлы cookie необходимы для работы нашего веб-сайта, поэтому вы не можете их отключить.

Функциональный

Эти файлы позволяют использовать другие функции сайта (кроме необходимых для его работы).Включив их, вы получите доступ ко всем функциям веб-сайта.

Аналитический

Эти файлы позволяют нам анализировать наш интернет-магазин, что может способствовать его лучшему функционированию и адаптации к потребностям Пользователей.

Поставщики аналитического программного обеспечения

Эти файлы используются поставщиком программного обеспечения, под которым работает наш магазин.Они не объединяются с другими данными, введенными вами в магазине. Целью сбора этих файлов является выполнение анализа, который будет способствовать разработке программного обеспечения. Вы можете прочитать больше об этом в политике использования файлов cookie Shoper.

Маркетинг

Благодаря этим файлам мы можем проводить маркетинговые мероприятия.

.

Смотрите также