Бурение горизонтально наклонное


5.1. Наклонно-направленное(горизонтальное) бурение

Наклонно-направленное бурение нефтяных и газовых скважин осуществляется по специальным профилям. Профили скважин могут варьироваться, но при этом верхний интервал ствола наклонной скважины должен быть вертикальным, c последующим отклонением в запроектированном азимуте. При геолого-разведочных работах на твёрдые полезные ископаемые наклонно-направленное бурение осуществляется шпиндельными буровыми станками c земной поверхности или из подземных горных выработок. Бурение таких скважин отличается тем, что вначале они имеют прямолинейное направление, заданное шпинделем бурового станка, a затем в силу анизотропии разбуриваемых пород отклоняются от прямолинейного направления.

Рост объемов наклонно-направленного бурения скважин с углами отклонения ствола скважин от вертикали более 50° обусловили ограничения по применению традиционных методов исследований с помощью аппаратуры, спускаемой в скважину на кабеле, и вызвали необходимость разработки специальных технологий доставки скважинных приборов в интервал исследований. Решение этой проблемы возможно с помощью бескабельных измерительных систем, доставляемых на забой с помощью бурового инструмента.

Получив широкое распространение, одноствольное наклонное бурение не исчерпало своих резервов.

Возможность горизонтального смещения забоя относительно вертикали (проекции устья скважины на пласт) позволила создать вначале кустовой, а затем многозабойные методы бурения.

Техническое усовершенствование наклонного бурения явилось базой для расширения многозабойного и кустового бурения.

Под кустовым бурением понимается способ, при котором устья скважин группируются на общей площадке, а конечные забои находятся в точках, соответствующих проектам разработки месторождения.

5.2.Искусственное отклонение скважин

Искусственное отклонение скважин широко применяется при бурении скважин на нефть и газ.

Искусственное отклонение скважин делится на наклонное, горизонтальное бурение, многозабойное (разветвленно-наклонное, разветвленно-горизонтальное) и многоствольное (кустовое) бурение.

Бурение этих скважин ускоряет освоение новых нефтяных и газовых месторождений, увеличивает нефтегазоотдачу пластов, снижает капиталовложения и уменьшает затраты дорогостоящих материалов.

Искусственное отклонение вплоть до горизонтального применяется в следующих случаях:

1) при вскрытии нефтяных и газовых пластов, залегающих под пологим сбросом или между 2-я параллельными сбросами;

2) при отклонении ствола от сбросовой зоны (зоны разрыва) в направлении продуктивного горизонта;

3) при проходке стволов на нефтеносные горизонты, залегающие под соляными куполами, в связи с трудностью бурения через них;

4) при необходимости обхода зон обвалов и катастрофических поглощений промывочной жидкости;

5) горизонтальное бурение незаменимо при вскрытии продуктивных пластов, залегающих под дном океанов, морей, рек, озер, каналов и болот, под жилыми или промышленными застройками, в пределах территории населенных пунктов

6) при проходке нескольких скважин на продуктивные пласты с отдельных буровых оснований и эстакад, расположенных в море или озере;

7) при проходке скважин на продуктивные пласты, расположенные под участками земли с сильно пересеченным рельефом местности (овраги, холмы, горы);

8) при необходимости ухода в сторону новым стволом, если невозможно ликвидировать аварию в скважине;

9) при забуривании 2-го ствола для взятия керна из продуктивного горизонта;

10) при необходимости бурения стволов в процессе тушения горящих фонтанов и ликвидации открытых выбросов;

11) при необходимости перебуривания нижней части ствола в эксплуатационной скважине;

12) при необходимости вскрытия продуктивного пласта под определенным углом для увеличения поверхности дренажа, а также в процессе многозабойного вскрытия пластов;

13) при кустовом бурении на равнинных площадях с целью снижения капитальных затрат на обустройство промысла и уменьшения сроков разбуривания месторождения;

14) при бурении с целью дегазификации строго по угольному пласту, с целью подземного выщелачивания, например, калийных солей и др.

Искусственное отклонение скважин в нефтяном бурении в основном осуществляют забойными двигателями (турбобуром, винтовым двигателем и реже электробуром) и при роторном способе бурения.

В настоящее время применяют следующие основные способы искусственного отклонения скважин.

-Использование закономерностей естественного искривления на данном месторождении (способ типовых трасс).

В этом случае бурение проектируют и осуществляют на основе типовых трасс (профилей), построенных по фактическим данным естественного искривления уже пробуренных скважин.

Способ типовых трасс применим только на хорошо изученных месторождениях, при этом кривизной скважин не управляют, а лишь приспосабливаются к их естественному искривлению.

Недостаток указанного способа - удорожание стоимости скважин вследствие увеличения объема бурения.

Необходимо также для каждого месторождения по ранее пробуренным скважинам определять зоны повышенной интенсивности искривления и учитывать это при составлении проектного профиля.

- Управление отклонением скважин посредством применения различных компоновок бурильного инструмента.

В этом случае, изменяя режим бурения и применяя различные компоновки бурильного инструмента, можно, с известным приближением, управлять направлением ствола скважины.

Этот способ позволяет проходить скважины в заданном направлении, не прибегая к специальным отклонителям, но в то же время значительно ограничивает возможности форсированных режимов бурения.

- Направленное отклонение скважин, основанное на применении искусственных отклонителей: кривых переводников, эксцентричных ниппелей, отклоняющих клиньев и специальных устройств.

Перечисленные отклоняющие приспособления используются в зависимости от конкретных условий месторождения и технико-технологических условий.

К наклонным скважинам при турбинном и роторном бурении на нефть и газ относятся в основном скважины, забуриваемые с поверхности вертикально с последующим отклонением в требуемом направлении, вплоть до горизонтального, т.е. под углом в 90 градусов.

studfiles.net

Техника и технология горизонтального и наклонно-направленного бурения скважин

Существуют два способа горизонтального бурения на нефть и газ. Первый (распространён в США) представляет собой прерывистый процесс проводки скважин с использованием роторного бурения (применяется с начала 20 века). При этом способе с забоя скважины долотом меньшего диаметра, чем диаметр ствола скважин, забуривается углубление под углом к оси скважины на длину бурильной трубы (рис. 2.6) с помощью съёмного или несъёмного клинового либо шарнирного устройства (рис. 2.7, рис. 2.8).

Рис. 2.6. Схема бурения клиновым устройством.

Рис. 2.7. Клиновой отклонитель.

Рис. 2.8. Шарнирный отклонитель.

Полученное таким образом направление углубляется и расширяется. Дальнейшее бурение ведётся долотом нормального диаметра с сохранением направления с помощью компоновки низа бурильной колонны, оснащённой стабилизаторами.

Второй способ, предложенный P. A. Иоаннесяном, П. П. Шумиловым, Э. И. Тагиевым и M. T. Гусманом в начале 40-x гг. 20 в., основан на использовании турбобура либо др. забойного двигателя. Этот способ представляет собой непрерывный процесс набора искривления и углубления скважины долотом нормального диаметра. При этом способе для набора искривления используется такая компоновка низа бурильной колонны, при которой на долото в процессе бурения действует сила, перпендикулярная его оси (отклоняющая сила). B этом случае весь процесс наклонно-направленного бурения сводится к управлению отклоняющей силой в нужном азимуте. Создание отклоняющей силы может осуществляться различными путями. Если турбобур односекционный, то для получения необходимой отклоняющей силы достаточно иметь над турбобуром переводник с перекошенными резьбами, либо искривлённую бурильную трубу (рис. 2.9).

Рис. 2.9. Турбинный отклонитель с искривлённой бурильной трубой.

При пропуске турбобура в скважину изогнутая часть компоновки над турбобуром за счёт упругих деформаций стремится выпрямиться, а в сечении изгиба возникает момент силы. Отклоняющая сила в этом случае равняется моменту силы, разделённому на расстояние от сечения изгиба до долота. Интенсивность набора угла искривления при описанной выше компоновке будет невысокой, а предельный угол искривления - менее 30°. Для более интенсивного набора искривления сечение изгиба, где возникает момент упругих сил, переносят ближе к долоту. Для этой цели применяются специальные шпиндели и турбобуры. Так как при таких шпинделях резко увеличивается отклоняющая сила, то интенсивность набора угла искривления и предельная величина искривления существенно увеличиваются.

На интенсивность набора угла искривления влияет также частота вращения долота и скорость подачи бурильной колонны в процессе бурения. Чем выше частота вращения долота и чем меньше скорость подачи бурильной колонны, тем интенсивнее, под действием отклоняющей силы, происходит фрезерование стенки скважины и тем интенсивнее искривление. Наибольшая интенсивность искривления может быть получена при применении в нижней части турбобура эксцентричного ниппеля, который позволяет выводить ствол скважины в горизонтальное положение.

Прямолинейные наклонные участки ствола скважины бурятся с компоновками, оснащёнными стабилизаторами. Ориентирование отклоняющей силы в нужном азимуте может осуществляться визирным спуском бурильной колонны либо с помощью инклинометра при установке над турбобуром диамагнитной трубы и магнитным устройством, расположенным в плоскости действия отклоняющей силы. Указанные методы ориентирования отклоняющей силы должны учитывать угол закручивания бурильной колонны, возникающий из-за реактивного момента турбобура, что в некоторой степени отражается на точности ориентирования. B 80-x гг. распространяются системы телеконтроля, позволяющие в процессе бурения контролировать направление действия отклоняющей силы. За рубежом при наклонно-направленном бурении интервалы набора искривления и выправления кривизны осуществляются в основном турбобурами либо объёмными двигателями, прямолинейные интервалы ствола бурятся роторным способом.

Отклонители

Назначение отклоняющих устройств -- создание на долото отклоняющего усилия или наклона оси долота к оси скважины в целях искусственного искривления ствола скважины в заданном или произвольном направлении. Их включают в состав компоновок низа бурильных колонн. Они отличаются своими особенностями и конструктивным выполнением.

В турбинном бурении в качестве отклоняющих устройств применяют кривой переводник, турбинные отклонители типа ТО и ШО, отклонитель Р-1, отклонитель с накладкой, эксцентричный ниппель и др.; в электробурении -- в основном механизм искривления (МИ); в роторном бурении -- отклоняющие клинья, шарнирные отклонители и др. Рассмотрим некоторые отклонители.

Кривой переводник (рис. 2.10) -- это наиболее распространенный и простой в изготовлении и применении отклонитель при бурении горизонтальных скважин. Он представляет собой толстостенный патрубок с пересекающимися осями присоединительных резьб. Резьбу с перекосом 1...40 нарезают в основном на ниппеле, в отдельных случаях -- на муфте. Кривой переводник в сочетании с УБТ длиной 8... 24 м крепят непосредственно к забойному двигателю. Отклонитель Р-1 (рис. 2.11) выполняется в виде отрезка УБТ, оси присоединительных резьб которой перекошены в одной плоскости и в одном направлении относительно ее оси. Отклонитель Р-1 предназначен для набора зенитного угла до 90° и выше, изменения азимута скважины, зарезки нового ствола с цементного моста и из открытого ствола.

Рис. 2.10. Кривой переводник

Отклонитель с накладкой -- это сочетание кривого переводника и турбобура, имеющего на корпусе накладку. Высота накладки выбирается такой, чтобы она не выдавалась за габаритные размеры долота. Отклонитель с накладкой при применении односекционных турбобуров обеспечивает получение больших углов наклона скважины. Его рекомендуется применять в тех случаях, когда непосредственно над кривым переводником необходимо установить трубы малой жесткости (немагнитные или обычные бурильные трубы).

Рис. 2.11. Отклонитель Р-1

Отклоняющее устройство для секционных турбобуров представляет переводник, соединяющий валы и корпуса верхней и нижней секции турбобура под углом 1,5...2,0°, причем валы соединяются с помощью муфты.

Турбинные отклонители (ТО) конструктивно выполняются посредством соединения нижнего узла с верхним узлом через кривой переводник, а валов -- через специальный шарнир. Серийно выпускаются турбинные отклонители (рис. 2.12) и шпиндели-отклонители (ШО).

Рис. 2.12. Турбинный отклонитель ТО-2: 1 -- турбинная секция; 2 -- шарнирное соединение; 3 -- шпиндельная секция

Турбинные отклонители имеют следующие преимущества:

· кривой переводник максимально приближен к долоту, что увеличивает эффективность работы отклонителя;

· значительно уменьшено влияние колебания осевой нагрузки на величину отклоняющей силы на долоте, что позволяет получить фактический радиус искривления, близкий к расчетному.

Недостаток турбинных отклонителей -- малая стойкость узла искривленного соединения валов нижнего и верхнего участков отклонителя.

Эксцентричный ниппель представляет собой отклонитель, выполненный в виде накладки, приваренной к ниппелю турбобура. Применяется этот отклонитель при бурении в устойчивых породах, где отсутствует опасность заклинивания или прихвата бурильной колонны.

Упругий отклонитель состоит из специальной накладки с резиновой рессорой. Накладка приваривается к ниппелю турбобура. Этот отклонитель применяют при бурении в породах, где эксцентричный ниппель не применим из-за опасности прихватов.

Механизм искривления -- это отклонитель для бурения наклонно-направленных скважин электробуром. В таких механизмах валы двигателя и шпинделя сопрягаются под некоторым углом, что достигается применением зубчатой муфты сцепления.

Многозабойное бурение

Многозабойное бурение - вид наклонно-направленного бурения, включающий проходку основного ствола с последующим забуриванием и проходкой в его нижней части дополнительных стволов, пересекающих геологическую структуру.

Многозабойное бурение применяется с целью повышения эффективности буровых работ при разведке и добыче полезных ископаемых, достигаемой за счёт увеличения доли полезной протяжённости стволов скважин.

Наиболее широко многозабойное бурение используется при разведке твёрдых полезных ископаемых. При разработке нефтяных месторождений. Многозабойное бурение принято называть разветвлённо-горизонтальным бурением. Впервые это бурение осуществлено в США (1930). Использование забойных двигателей при многозабойном бурении впервые реализовано в CCCP по предложению A.M. Григоряна, B. A. Брагина, K. A. Царевича в 1949.

Рис. 2.13. Способы вскрытия пласта: 1 -- обычная скважина; 2 -- многозабойная скважина; 3 -- продуктивный пласт нефти; 4 -- резервуар для нефти.

Многозабойное бурение целесообразно в сравнительно устойчивых продуктивных пластах мощностью 20 м и более, например в монолитных или с прослоями глин и сланцев нефтеносных песчаниках, известняках и доломитах, при глубинах 1500-2500 м при отсутствии газовой шапки и аномально высоких пластовых давлений. Многозабойное бурение сокращает число обычных скважин благодаря увеличению дренированной поверхности продуктивного пласта. Для проводки многозабойной скважины используется комплекс технических средств и контрольно-измерительной аппаратуры, обеспечивающих проводку стволов в заданном направлении.

Рис. 2.14. Многозабойно-горизонтальная скважина-гигант: 1 -- плавучая буровая установка; 2 -- трубы; 3 -- устье скважины; 4 -- основной ствол; 5 -- ответвления; 6 -- нефтеносный пласт.

Вскрытие нефтяных пластов многозабойными скважинами позволяет увеличить дебиты нефтяных скважин за счёт увеличения поверхности фильтрации, увеличить нефтеотдачу пласта, ввести в промышленную разработку малодебитные месторождения с низкой проницаемостью коллектора или высоковязкой нефтью, повысить приёмистость нагнетательных скважин и точность проводки противофонтанных скважин за счёт перебуривания только нижних её интервалов в случае непопадания первым стволом. B нефтедобывающих районах эксплуатируются скважины с 5-10 ответвляющимися стволами длиной по 150-300 м каждый. Благодаря этому приток нефти на первом этапе эксплуатации в несколько раз больше, чем из обычных скважин. B нашей стране с помощью многозабойного бурения успешно проведены десятки скважин на нефть, разрабатывается и испытывается многозабойное бурение глубоких горизонтальных скважин большой протяжённости (несколько км).

Page 2

Профиль горизонтальной скважины состоит из двух сопряженных между собой частей: направляющей части и горизонтального участка.

Под направляющей частью профиля следует понимать часть ствола скважины от ее устья до точки с заданными координатами на кровле или непосредственно в самом продуктивном пласте, являющемся началом горизонтального участка.

В отличие от наклонных скважин при проводке направляющей части горизонтальной скважины необходимо на проектной глубине вывести ствол скважины не только в точку с заданными координатами, но и, что очень важно для дальнейшей проводки горизонтального участка, под заданным углом.

Так как горизонтальный участок предназначен для продольного вскрытия продуктивного пласта, который может иметь различную форму и структуру, то, в свою очередь, горизонтальный участок профиля должен иметь соответствующую геометрию.

При проектировании горизонтальных скважин используют только J-образный тип профиля.

По величине радиуса кривизны ствола различают три типа профиля горизонтальной скважины: с большим, средним и малым радиусами (рис. 2.15).

Горизонтальные скважины с большим (более 190 м) радиусом кривизны могут быть реализованы при кустовом способе бурения на суше и на море, а также при бурении отдельных скважин с большим отклонением от вертикали при длине горизонтального участка 600-1500 м.

При строительстве данных скважин используется стандартная техника и технология наклонно направленного бурения, позволяющая получать максимальную интенсивность искривления i = 0,7?2,0° на 10 м проходки.

Рис. 2.15. Схемы горизонтальных скважин с большим (> 190 м), средним (60--190 м) и малым (10--30 м) радиусом кривизны.

Горизонтальные скважины со средним радиусом кривизны применяются при бурении как одиночных скважин, так и для восстановления продуктивности эксплуатационных скважин. При этом максимальная интенсивность искривления скважины находится в пределах от 3 до 10 градус/10 м (радиус 60-190 м) при длине горизонтального участка 450-900 м. Горизонтальные скважины, выполняемые по среднему радиусу, наиболее экономичны, так как имеют значительно меньшую длину ствола (по сравнению со скважинами с большим радиусом), а также обеспечивают более точное попадание ствола в заданную точку на поверхности продуктивного горизонта, что особенно важно для разбуривания маломощных нефтяных и газовых пластов.

Горизонтальные скважины с малым радиусом кривизны успешно используются при разбуривании месторождений, находящихся на поздней стадии эксплуатации, а также для бурения ствола скважины из вырезанного участка эксплуатационной колонны. Профиль скважины с коротким радиусом искривления позволяет разместить насосное оборудование в вертикальном участке скважины и обеспечить наибольшую точность попадания ее ствола в заданную точку поверхности продуктивного горизонта. При этом радиус кривизны ствола скважины составляет 10-30 м (интенсивность 1,1-2,5° на 1 м) при длине горизонтального участка 90-250 м.

С уменьшением радиуса кривизны ухудшаются условия работы труб в скважине, снижается вероятность прохождения в скважину забойных двигателей, геофизической аппаратуры и обсадных труб. Если скважины с большим радиусом кривизны можно бурить с применением обычных забойных двигателей и бурильных труб, то при бурении скважин по среднему радиусу в компоновку низа бурильной колонны включают специальные трубы и укороченный двигатель. Проводка скважин с коротким и ультракоротким радиусом (менее 10 м) кривизны также невозможна без специальных бурильных труб и инструмента. Доля скважин со средним и коротким радиусом кривизны в общем объеме постоянно растет.

Проектирование профиля горизонтальной скважины в России осуществляется преимущественно по профилю с большим и средним радиусами кривизны ствола скважины.

Проектирование горизонтальных скважин на Ромашкинском месторождении и окружающих его площадях осуществляется по комбинированному профилю с тангенциальным участком. Такой профиль включает вертикальный участок длиной до 400-700 м, участок начального искривления до 45-75° по радиусу 286-384 м, тангенциальный участок длиной 20-100 м, участок увеличения зенитного угла до 86-95° по радиусу 90-120 м, горизонтальный участок длиной 200-450 м. В некоторых случаях в целях корректировки зенитного угла вместо тангенциального участка включают участок увеличения зенитного угла.

По аналогичному профилю проектируются горизонтальные скважины в Южно-Уральском регионе и на нефтяных месторождениях Печорского бассейна.

Page 3
< Предыдущая СОДЕРЖАНИЕ Следующая >
   

Перейти к загрузке файла

Большое разнообразие геолого-технических условий эксплуатации нефтяных и газовых месторождений, различное состояние их разработки требуют индивидуального подхода к проектированию горизонтальных скважин даже в пределах одного месторождения или площади.

Основной целью бурения горизонтальной скважины является не пересечение продуктивного пласта в поперечном направлении, как при наклонном бурении, а вскрытие нефтегазосодержащей части пласта продольным стволом. Поэтому проектирование горизонтальной скважины целесообразно начинать с определения протяженности, формы и направления горизонтального участка скважины.

Указанные параметры зависят от степени неоднородности продуктивного пласта, его мощности и литологии, распределения горной породы по твердости и устойчивости разреза.

Геологическая характеристика разреза должна давать полное представление о следующем:

· возможность заканчивания скважины без разобщения и изоляции нижней части разреза, включая продуктивный пласт;

· наличие интервалов устойчивых пород и их мощность;

· литологический состав, характер и степень фациальных изменений пород продуктивного пласта и вышележащих пластов;

· углы наклона пласта и его мощность.

Эксплуатационная характеристика пласта должна включать:

· запасы нефти, добыча которых вертикальными или наклонными скважинами затруднена или практически невозможна;

· пластовое давление;

· состояние разработки залежи;

· режим работы пласта;

· способы эксплуатации и предполагаемая частота, причины и характер ремонтов;

· эффективность других методов интенсификации добычи и методов увеличения нефтеотдачи.

Протяженность и форму горизонтального участка следует окончательно выбирать только после бурения и пробной эксплуатации на конкретном месторождении нефти и газа нескольких промышленно-оценочных горизонтальных скважин, так как опыт показывает, что характеристика залежи, полученная по вертикальным разведочным или эксплуатационным скважинам, отстоящим друг от друга на больших расстояниях, бывает совершенно недостаточна для проектирования горизонтальных скважин, где по сравнению с наклонно направленным бурением требуется значительно большая детализация продуктивных отложений.

В продуктивных пластах (однородных или неоднородных) небольшой толщины (5-7 м на глубине залегания до 800 м и 10-15 м на глубине залегания 800-2000 м) целесообразно вписывание горизонтального участка в средней по толщине части пласта по траектории, параллельной кровле и подошве пласта (рис. 2.16.).

Низкопроницаемые нефтяные пласты значительной толщины с преимущественно вертикальной трещиноватостью в водоплавающих залежах с активной подошвенной водой целесообразно разбуривать параллельным горизонтальным стволом (рис. 2.17). Такой профиль скважины позволит пересечь значительно большее число продуктивных вертикальных трещин. Кроме того, благодаря большей поверхности фильтрации возможна эксплуатация с небольшой депрессией для предупреждения прорыва воды по трещинам. Даже в условиях значительного уменьшения депрессии, в связи с многократным расширением зоны дренирования, горизонтальные скважины дают большие дебиты.

Рис. 2.16. Схема расположения горизонтального ствола в продуктивном пласте малой толщины.

Если проводка параллельного горизонтального участка планируется в непосредственной близости от кровли продуктивного пласта, то такой горизонтальный участок проектируется выпуклым и его проводка осуществляется с малоинтенсивным уменьшением зенитного угла.

В продуктивных пластах мощностью более 20 м проводка горизонтального участка может быть осуществлена также по выпуклому профилю.

Для увеличения продуктивности горизонтальных скважин и времени их эксплуатации в условиях низких пластовых давлений рекомендуется использовать вогнутые горизонтальные участки.

Рис. 2.17. Вскрытие пластов с вертикальной трещиноватостью горизонтальным стволом: 1 - нефтяной пласт; 2 - ВНК; 3 - водяная зона.

Если продуктивный пласт имеет небольшую мощность и неоднородную структуру, при которой продуктивные зоны чередуются с непродуктивными прослоями, причем точное расположение продуктивных зон неизвестно, то такие пласты целесообразно вскрывать волнообразно (рис. 2.18). Такой вид горизонтального участка может успешно применяться в залежах платформенного типа, когда толщина пласта и прослоев меняется по площади, продуктивный разрез недостаточно устойчив, а в непосредственной близости над ним залегают породы, требующие надежной изоляции обсадными трубами с цементированием. Залежи подобного типа широко распространены в России (например, в Западной Сибири) и за рубежом, из них добывается основное количество нефти. В этих условиях из-за слоистого строения продуктивного пласта вследствие частого переслаивания песчаников прослоями глин или аргиллитов вскрытие пласта параллельным и пологонаклонным стволом не всегда оказывается целесообразным.

Представляется перспективным разработка техники и технологии бурения волнообразных стволов, позволяющих многократно (до 6-10 раз) пересекать продуктивный пласт. При необходимости следует предусмотреть изоляцию продуктивного пласта креплением обсадной колонной и цементированием с последующей перфорацией против нефтеносных пластов. Бурение таких скважин позволит коренным образом улучшить разработку нефтяных месторождений упомянутого типа (например, в Западной Сибири), поскольку повышается вероятность многократного вскрытия каждого из прослоев, что равнозначно уплотнению сетки скважин, и должно приводить к увеличению как текущих отборов нефти, так и конечной нефтеотдачи.

Рис. 2.18. Вскрытие слоистых пластов волнообразным стволом.

Волнообразный ствол по сравнению с пологонаклонным и параллельным стволами при одинаковой проходке в пределах продуктивного пласта дает при прочих равных условиях больший дебит. Волнообразный ствол целесообразно применять при отсутствии в кровле и подошве активных водоносных, газоносных и поглощающих пластов, так как возможны выходы ствола за пределы пласта. Не следует использовать волнообразный профиль горизонтального участка для вскрытия небольших по мощности продуктивных пластов, состоящих из прослоев горных пород, резко отличающихся по твердости.

В условиях слоистонеоднородных пластов небольшой толщины, расчлененных непроницаемыми прослоями, характерных для многих залежей нефти Западной Сибири, горизонтальный ствол, параллельный кровле или подошве пласта, может пройти по одному из непродуктивных прослоев (рис. 2.19). Основная часть разреза при этом окажется невскрытой. При переслаивании песчаников с глинами целесообразно пересекать продуктивный пласт пологонаклонным горизонтальным стволом от кровли до его подошвы (см. рис 2.19).

Пологонаклонные горизонтальные участки проектируются преимущественно тангенциальными. Если геологические или иные условия не позволяют осуществлять стабилизацию зенитного угла непосредственно в продуктивном пласте, то используются горизонтальные участки выпуклой или вогнутой формы.

Рис. 2.19. Вскрытие горизонтальным стволом слоистого продуктивного пласта: 1, 2 - параллельный ствол в непроницаемом и проницаемом слоях соответственно; 3 - пологонаправленный ствол.

Оптимальная протяженность горизонтального участка нефтедобывающих скважин по критерию минимума затрат на бурение составляет 400-500 м при средних глубинах 1200-2600 м, а по критерию минимума общих затрат на разработку месторождения нефти - 700-800 м. Максимальная протяженность горизонтального участка в соответствии с рекомендациями работы (0,5?1,9) Нв.

Направляющая часть профиля горизонтальной скважины проектируется с учетом прежде всего реализации запланированных параметров горизонтального участка в намеченном месте продуктивного пласта с использованием современных технических средств и технологии.

Геометрия направляющей части профиля горизонтальной скважины зависит от следующих факторов:

· горно-геологических условий бурения, структуры и литологии горных пород, расположенных непосредственно над вскрываемым продуктивным пластом;

· конструкции скважины;

· протяженности горизонтального участка;

· статического уровня пласта;

· мощности продуктивного пласта;

· возможности применения существующей технологии горизонтального бурения.

Рис. 2.20. Профили горизонтальных скважин.

При проектировании горизонтальных скважин используются профили с большим, средним, коротким и ультракоротким радиусами кривизны, а также комбинированный профиль.

Скважины с горизонтальным участком протяженностью свыше 500 м в целях снижения сил сопротивления при перемещении бурового инструмента в скважине, а также создания достаточной нагрузки на долото целесообразно проектировать с большим радиусом кривизны. При этом используются профили (рис. 2.20).

В тех случаях, когда кровля продуктивного пласта представлена неустойчивыми горными породами, требующими перекрытия их обсадной колонной, используют комбинированный профиль горизонтальной скважины, у которого верхние интервалы проектируются по большому радиусу кривизны, а нижние - по среднему или малому.

studbooks.net

Гнб бурение

Горизонтальное бурение является общим названием различных способов бестраншейной прокладки труб с применением бурового спецоборудования. На данный момент существует 7 (минимум) таких способов.

Выбор подходящего вида горизонтального бурения

Выбор обычно осуществляется на стадии разработки проекта или строительства. Однако бывает и так, что (довольно часто), заложенный проектировщиками вид прокладки трубы, на стройплощадке заменяется на другой. Причины могут быть разными: нехватка денег, изменение обстоятельств и прочее.

Выбор способа бурения зависит от:

  1. Диаметра трубы;
  2. Длины прокладываемого участка;
  3. Используемого материала (сталь, пластик, ПВХ и прочее);
  4. Глубины заложения трубы;
  5. Трубопровода (напорный, безнапорный);
  6. Уровня грунтовых вод;
  7. Расположение коммуникаций.

Виды бурения

В принципе, любой вид горизонтального бурения хорош при прокладке коммуникаций. Причем немаловажную роль играет и взаимозаменяемость некоторых из них.

К примеру, метод микротоннелирования, предусмотренный в проекте, можно, соблюдая определенные условия, заменить на ГНБ бурение или продавливание футляра.

Горизонтально направленное бурение

Этот метод горизонтального направленного бурения считается самым распространенным и популярным для прокладки футляров для кабелей и трубопроводов (напорных). У этого метода имеется и второе название, горизонтально наклонное бурение. Его вполне можно использовать и для самотечных (безнапорных) труб, однако здесь надо учитывать некоторые особенности работ и их тонкости.

Горизонтально направленное бурение (гнб) скважины (её диаметр бывает примерно на 50% больше трубного) выполняется с поверхности земли. Формирование скважины осуществляется поэтапным расширением, с использованием полимеров и бентонита. Раствор бентонита:

  • Дает возможность выносить выбуренный грунт;
  • Охлаждает буровой инструмент;
  • Способен поддерживать скважину, чтобы она не обрушилась.

Отработанный раствор, откаченный илососами из котлована вместе с грунтом, утилизируется на свалку. Если тщательно сформировать скважину, то это будет хорошим залогом для безаварийной работы.

Длина труб колеблется в диапазоне 25 - 1000 метров (может быть и выше), а их диаметр составляет 63 – 1200 мм. Основными материалами изготовления считаются:

Если использовать систему локации, то бурение методом гнб будет возможно по заданной траектории, которая ограничивается углом забуривания (26-34%) и радиусом штанговых изгибов. Исходя из типа штанг, возможен 12% изгиб на одну штангу.

Как видите, горизонтальное бурение, предназначенное для прокладки труб возможно в разных вариантах.

Самыми известными производителями оборудований ГНБ считаются:

  • XCMG;
  • Vermeer;
  • Robbins;
  • Prime Drilling;
  • American Auger;
  • И прочие.

А в последние годы на данном рынке появились и азиатские производители, представляющие Китай и Ю. Корею.

Управляемый прокол

Рассмотрим еще одно горизонтальное бурение, прокол. Считается оптимальным вариантом при прокладке труб малых диаметров (до 315 мм) под автомобильными и железными дорогами. При помощи данного метода прокладываются:

  • Трубы (полиэтиленовые, стальные);
  • Кабели (силовые, телефонные);
  • Канализации;
  • Футляры для снабжения (водяного, газового).

Управляемый прокол выполняется прокалывающей установкой. Её основная часть – это силовой гидроцилиндр, обладающий 36-тонной мощностью. Подобная установка функционирует без применения раствора из бентонита, а стенки скважины держатся за счет уплотненного слоя грунта.

Преимущества установки управляемого прокола:

  • Легкость транспортировки и её простота;
  • Компактность;
  • Невероятная мощность;
  • Повышенная электробезопасность;
  • Контроль направления.

Бурошнековое бурение

Горизонтальное шнековое бурение осуществляется при помощи гидравлической домкратной установки, оснащенной вращающимся режущим инструментом, который запускается из рабочего котлована шнековым механизмом. Шнековая установка дает возможность проложить стальные футляры, бетонные (полиэтиленовые) трубы, диаметр которых меняется (зависит от типа грунта) в пределах 100 - 1720 мм.

Для прокладки коммуникаций используют два котлована (стартовый, приемный). Их глубина должна быть на полметра (минимум) ниже глубины прокладки труб. Первый этап состоит из подготовки котлованов, второй – из спуска в котлован и монтажа там шнековой установки, третий – из прокладки трубопровода, контролируемый лазером. При завершении работ, шнек выводят в приемный котлован и вытаскивают в обратной последовательности.

При возведении самотечной канализации такая технология позволяет за счет лазерной системы укладывать трубы с нужным уклоном.

Современное ГНБ

Горизонтальное бурение ГНБ – это бестраншейный способ укладки подземных коммуникаций, позволяющий предотвращать разрушение грунта и исключать техногенное воздействие на окружающий мир. Используется при этом спецоборудование - бурильная установка горизонтального бурения.

При прокладке коммуникаций в центрах мегаполисов или в промышленных зонах, переходы ГНБ становятся незаменимыми помощниками. Горизонтальное бурение грунта требует небольшое время прокладки и минимальные затраты на реконструкцию дорожного покрытия, если вести сравнения с траншейными методами. А на небольших дачных участках возможно и горизонтальное бурение вручную.

Современное бестраншейное строительство позволяет реализовать прокладку трубопроводов без использования траншей, что является реальным прогрессом в строительстве подземных тоннелей.

Одним из методов ГНБ является горизонтально направленное шнековое бурение. Для продавливания в тяжелых грунтах стальных труб-футляров сегодня применяются установки горизонтального шнекового бурения, позволяющие прокладывать:

  • Газопроводы;
  • Канализацию;
  • Теплотрассы;
  • Нефтепроводы;
  • Водопроводы.

Чтобы осуществить выполнение горизонтально направленного бурения, укомплектовываются сменным оборудованием, позволяющим прокладывать трубы разного диаметра.

Отметим, что бурение выполняется без использования воды и применения бентонита, что обеспечивает скважине стабильность.

www.gnbportal.ru

38 Бурение наклонно-направленных и горизонтальных скважин

В процессе бурения скважины, подверженные естественному искривлению, могут не выйти на нефтегазоносные слои и, следовательно, не выполнить своих проектных заданий. Но накопленный фактический материал по естественному искривлению позволил установить ряд общих закономерностей, учитывая которые буровики научились проходить скважины в строго заданном направлении. Такие скважины получили название наклонно-направленных.

Искусственное отклонение — это направление ствола скважины в процессе бурения по определенному плану с доведением забоя до заданной точки.

Искусственное отклонение скважин подразделяется на наклонное, горизонтальное, многозабойное (разветвленно-наклонное, разветвленно-горизонтальное) и многоствольное (кустовое) бурение. Бурение этих скважин ускоряет освоение новых нефтяных и газовых месторождений, увеличивает нефтегазоотдачу пластов, снижает капиталовложения и уменьшает затраты дефицитных материалов.

Искусственное отклонение применяется в случаях:

1) при вскрытии нефтяных и газовых пластов, залегающих под пологим сбросом или между двумя параллельными сбросами;

2) при отклонении ствола от сбросовой зоны (зоны разрыва) в направлении продуктивного горизонта;

3) при проходке стволов на нефтяные пласты, залегающие под соляными куполами, в связи с трудностью бурения через них;

4) при необходимости обхода зон обвалов и катастрофических поглощений промывочной жидкости;

5) при вскрытии продуктивных пластов, залегающих под дном океанов, морей, рек, озер, каналов и болот;

6) при проходке нескольких скважин на продуктивные пласты с отдельных буровых оснований и эстакад, расположенных в море или озере;

7) при проходке скважин на продуктивные пласты, расположенные под участками земли с сильно пересеченным рельефом местности (овраги, холмы, горы);

8) при необх-ти ухода в сторону новым стволом, если невозможно ликвидировать аварию в скважине;

9) при забуривании второго ствола для взятия керна из продуктивного горизонта;

10) при необх-ти бурения стволов в проц-се тушения горящих фонтанов и ликвидации открытых выбросов;

11) при необходимости перебуривания нижней части ствола в эксплуатационной скважине;

12) при вскрытии продуктивного пласта под определенным углом для увеличения поверхности дренажа, а также в процессе многозабойного вскрытия пластов;

13) при кустовом бурении на равнинных площадях с целью снижения капитальных затрат на обустройство промысла и уменьшения сроков разбуривания месторождения;

14) при бурении с целью газификации строго по угольному пласту и с целью подземного выщелачивания.

В России искусственное отклонение скважин в нефтяном бурении в основном осуществляют забойными двигателями (турбобуром, винтовым двигателем и реже электробуром).

Наклонные скважины – это скважины, для которых проектом предусматривается определенное отклонение оси ствола от вертикали по вполне определенной кривой.

Наклонное бурение в настоящее время широко применяется при бурении скважин на нефть, газ и твердые полезные ископаемые.

К наклонным скважинам при турбинном и роторном бурении на нефть и газ относятся в основном скважины, забуриваемые с поверхности вертикально с последующим отклонением в требуемом направлении.

Получив широкое распространение, одноствольное наклонное бурение не исчерпало своих резервов. Возможность горизонтального смещения забоя относительно вертикали (проекции устья скважины на пласт) позволила создать вначале кустовой, а затем многозабойные методы бурения. Техническое усовершенствование наклонного бурения явилось базой для расширения многозабойного и кустового бурения.

Горизонтальное и разветвленное горизонтальное бурение применяется для увеличения нефте- и газоотдачи продуктивных горизонтов при первичном освоении месторождений с плохими коллекторами и при восстановлении малодебитного и бездействующего фонда скважин.

Если при бурении наклонной скважины главным является достижение заданной области продуктивного пласта и его поперечное пересечение под углом, величина которого, как правило, жестко не устанавливается, то основная цель бурения горизонтальной скважины - пересечение продуктивного пласта в продольном направлении. При этом протяженность завершающего участка скважины, расположенного в продуктивном пласте (горизонтального участка), может превышать 1000 м.

studfiles.net


Смотрите также