Бурения скважины технология


Технология бурения скважин

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ

1.ОБЩИЕ СВЕДЕНИЯ О БУРЕНИИ СКВАЖИН

1.1 Основные технические понятия, целевое назначение скважин

1.2 Производственные операции бурения

1.3 Основные технологические понятия и показатели бурения

2.ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД И ИХ ВЛИЯНИЕ НА ПРОЦЕСС БУРЕНИЯ

2.1 Классификация горных пород по степени связности

2.2 Буримость и классификация горных пород по буримости

3.ТАМПОНИРОВАНИЕ СКВАЖИН

3.1 Производство работ по цементированию скважины при помощи двух пробок

3.2 Расчет цементирования скважин способом двух пробок

3.3 Ликвидационный тампонаж скважины

ЛИТЕРАТУРА

скважина цементирование порода горный

ВВЕДЕНИЕ

1.1 Основные технические понятия, целевое назначение скважин

Диаметр скважины определяется диаметром породоразрушающего инструмента и изменяется в пределах от 16 до 1500 мм.

Длина ствола скважины - это расстояние от устья до забоя скважины, измеренное по ее осевой линии. Глубина скважины это разница между отметками устья и забоя по шкале глубин (ось z). Достигает 12500 м.

Элементы скважины:

Устье скважины - начало скважины, то есть место пересечения ее с земной поверхностью или с поверхностью горной выработки.

Забой скважины - дно скважины

Стенки скважины - боковые поверхности скважины.

Ствол скважины - пространство в недрах, занимаемое скважиной.

По способу разработки забоя бурение разделяется на бескерновое и колонковое (рис. 1.1.).

Бескерновое бурение - бурение, при котором горная порода разрушается на всей площади забоя. Колонковое бурение - бурение, при котором горная порода разрушается по кольцевому забою с сохранением керна. Керн - колонка горной породы, образующаяся в результате кольцевого разрушения забоя скважины.

Основные размеры скважины - диаметры интервалов бурения в мм; диаметры наружные и внутренние колонн обсадных труб в мм; глубина интервалов скважины от устья до забоя в м; общая глубина и длина скважины от устья до забоя в м.

Пространственное расположение буровой скважины определяется: 1) координатами устья x, y, z; 2) направлением скважины; 3) углом наклона скважины; 4) азимутом скважины; 5) глубиной (рис. 1.2.).

По направлению бурения скважины, форме ствола и их количеству скважины делятся на следующие группы: 1- вертикальные; 2- наклонные; 3- горизонтальные; 4- восстающие; 5- искривленные; 6- многоствольны

Буровой установкой называется комплекс, состоящий из буровой вышки (или мачты), бурового и энергетического оборудования, необходимых при бурении скважин. В зависимости от способа бурения буровые установки подразделяются на вращательные, ударные, вибрационные и др. В зависимости от транспортных средств подразделяются на стационарные, передвижные, самоходные и переносные:

По целевому назначению буровые скважины делятся на три основные группы: геологоразведочные, эксплуатационные и технические.

1 - Геологоразведочные скважины:

· Картировочные

· Поисковые

· Разведочные

· Гидрогеологические

· Инженерно-геологические

· Сейсмические

· Структурные

· Опорные

· Параметрические

2 - Эксплуатационные скважины :

· Водозаборные

· Нефтяные и газовые

· Скважины подземной газификации углей

· Скважины для добычи рассолов

· Геотехнологические скважины

3 - Технические скважины:

· Взрывные скважины

· Стволы шурфов и шахт

· Другие

1.2 Производственные операции бурения

Бурение как производственный процесс состоит из ряда последовательных операций,

1. Транспортирование буровой установки на точку бурения;

2. монтаж буровой установки;

3. Собственно бурение (проходка ствола скважины), которое включает в себя:

а) чистое бурение, т. е. непосредственное разрушение горной породы породоразрушающим инструментом на забое скважины;

б) очистка забоя от разрушенной породы и транспортирование ее от забоя до устья скважины. При бурении с промывкой или продувкой, а также при бурении шнеками эта операция совмещается с основной - чистым бурением;

в) спуско-подъемные операции осуществляются для замены износившегося породоразрушающего инструмента и для подъема керна (образцов пород).

4. Крепление стенок скважины в неустойчивых породах, т. е. способных к обрушения (трещиноватые, слабосвязанные, рыхлые, сыпучие и плывуны), что может производиться двумя способами:

а) крепление спуском в скважину обсадных колонн труб, что требует остановки бурения;

б) крепление промывочными жидкостями, закрепляющими стенки скважины, производимое одновременно с бурением

5. Испытания и исследования в скважине (измерение искривления, каротаж и др.

6. Тампонирование скважин с целью разобщения и изоляции водоносных пластов с разным химическим составом вод или с целью изоляции водоносного пласта от нефтегазоносного.

7. Установки фильтра и водоподъемника в гидрогеологической скважине и производство гидрогеологических исследований (замеры уровня воды в скважине, отборы проб воды, определение дебита скважины с помощью пробных откачек).

8. Предупреждение и ликвидация аварий в скважине.

9. Извлечение обсадных труб и ликвидация скважины после выполнения задачи (ликвидационный тампонаж).

10. Демонтаж буровой установки и перемещение на новую точку бурения

Перечисленные рабочие операции бурения являются последовательными, т. е. могут выполняться последовательно одной и той же бригадой.

При необходимости бурения нескольких скважин и при наличии резервных буровых установок с целью ускорения разведочных ·работ некоторые рабочие операции могут быть параллельными, т. е. выполняться двумя или несколькими специализированными бригадами. Так, например, буровая бригада выполняет собственно бурения и крепление скважины; монтажные бригады занимаются только транспортированием, монтажом, демонтажем буровых установок, ликвидационным тампонажем скважин; каротажная бригада занимается только каротажем и т. п.

1.3 Основные технологические понятия и показатели бурения

Показателями бурения называются параметры, характеризующие количество и качество результатов проходки скважин. Главнейшими из них являются: скорость, стоимость 1 м пробуренной скважины, процент выхода керна, направление ствола скважины и др.

Режимом бурения называется сочетание параметров, которые могут изменяться бурильщиком.

Так, например, при вращательном бурении основными параметрами режима бурения являются: 1) осевая нагрузка на породоразрушающий инструмент; 2) частота вращения бурового снаряда;

3) качество очистного агента (воды, бурового раствора или сжатого воздуха); 4) объемный расход, т. е. объем в единицу времени очистного агента.

Различают следующие разновидности режимов бурения: оптимальный и специальный.

Оптимальным режимом бурения называется сочетание параметров режима бурения, обеспечивающих максимальную скорость бурения в данных геолого-технических условиях при данном типоразмере породоразрушающего инструмента и при обеспечении требуемых качественных показателей: надлежащего направления ствола скважины и высокого выхода керна.

Специальным режимом бурения называется сочетание специальных технологических задач. Например, взятие керна полезного ископаемого с помощью специальных технических средств, выпрямление ствола скважины, искусственное искривление скважины в заданном направлении и др. В этом случае величина скорости бурения имеет подчиненное значение.

Рейсом бурения называется комплекс работ, затраченных на выполнение следующих рабочих операций: 1) спуск бурового снаряда в скважину; 2) чистое бурение, т. е. углубление скважины (основная операция); 3) подъем бурового снаряда из скважины.

2.ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД И ИХ ВЛИЯНИЕ НА ПРОЦЕСС БУРЕНИЯ

Горные породы классифицируются по разным признакам. По происхождению они делятся на: магматические или изверженные; (глубинные и излившиеся); осадочные (механические или обломочные, хемогенные, органогенные); метаморфические, образовавшиеся из магматических и осадочных пород на больших глубинах под действием высоких давлений и температур.. Для бурения важны физико-механические свойства горных пород, которые определяют сопротивляемость породы разрушению, а, следовательно, производительность и затраты. Физические свойства горных пород характеризуют их физическое состояние. Из всего разнообразия физических свойств пород прямо или косвенно влияют на процесс бурения следующие: минеральный состав, степень связности, пористость, плотность, удельный вес, структура, текстура, зернистость.

Механические свойства горных пород являются внешним проявлением физических и выражаются в способности оказывать сопротивление деформированию и разрушению. К ним относятся: прочность, крепость, динамическая прочность, твердость, упругость, хрупкость, пластичность, абразивность и др. В целом, изверженные породы наиболее прочные, за ними следуют метаморфические, потом осадочные, хотя и здесь не без исключений. На прочность пород оказывает существенное влияние степень их выветривания. Есть гранит, а есть выветренный гранит, прочность второго намного ниже.

Изучение физико-механических свойств горных пород необходимо 1) для выбора способа бурения и наиболее производительных типов породоразрушающих инструментов; 2) для разработки рациональной технологии бурения и крепления стенок скважины; 3) для расширения геологической изученности района работ. Особое внимание уделяют исследованию физико-механических свойств керна из опорных скважин, так как результаты этого изучения используются при составлении проектов бурения новых скважин..

2.1 Классификация горных пород по степени связности

По степени связности горные породы разделяются на четыре основные группы: скальные, связные, рыхлые (сыпучие) и плывучие. Скальные породы характеризуются различной, обычно высокой твердостью, обусловленной наличием между минеральными зернами молекулярных сил сцепления, которые после разрушения породы не восстанавливаются. Скальные породы по содержанию кварца разделяются на кварцсодержащие и бескварцевые. Первые характеризуются большей твердостью и абразивностью. Связные породы отличаются от скальных меньшей прочностью. Обычно это некоторые типы осадочных пород, в которых обломочный материал связан цементирующей массой иного состава или структуры. К ним, например, относятся различные песчаники. Рыхлые породы (сыпучие) представляют собой механическую смесь частиц минералов или пород, не связанных между собой. Плывучие породы обладают способностью к течению, это обычно разжиженные водой пески (плывуны), но к течению способны породы и в твердом состоянии, например лед.

2.2 Буримость и классификация горных пород по буримости

Буримостью называется сопротивление горной породы проникновению в нее породоразрушающего инструмента. Буримость является комплексной функцией, зависящей, во-первых, от механических и абразивных свойств горных пород, во-вторых, от применяемой техники и технологии бурения, а именно: способа, типа и площади разрушения. Буримость является одним из основных факторов, определяющих производительность труда в процессе бурения скважин.

Для вращательного колонкового бурения все горные породы разделены на двенадцать категорий по возрастающей трудности бурения. Критерием отнесения к той или иной категории является механическая скорость бурения при стандартных условиях. Определить точно только визуально категорию породы по величине механической скорости бурения в производственных условиях не всегда представляется возможным. Тем не менее, это обычно и практикуется при документации керна. При таком визуальном и субъективном способе не исключаются неточности в отнесении породы к той или иной категории, и здесь важен опыт геолога. Буримость зависит от способа бурения. Поэтому для разных способов бурения разработаны свои классификации горных пород по буримости, в которых горные породы сгруппированы в категории в зависимости от показателя буримости. Ниже приводиться классификация пород по их буримости при колонковом способе. За критерий отнесения породы к соответствующей категории принята углубка скважины за 1 час чистого времени бурения. Скорость проходки пород I категории составляет 20-30 м/час; XII категории - 5-10 см/час.

Таблица 2.1
Классификация горных пород по буримости для вращательного механического бурения скважин

породы

Горные породы, типичные для каждой категории

I

Торф и растительный слой без корней; рыхлые: лесс, пески (не плывуны), супеси без гальки и щебня; ил влажный и иловатые грунты; суглинки лессовидные; трепел: мел слабый

II

Торф и растительный слой с корнями или с небольшой примесью мелкой (до 3 см) гальки и щебня; супеси и суглинки с примесью до 20% мелкой (до 3 см) гальки или щебня; пески плотные; суглинок плотный; лесс; мергель рыхлый; плывун без напора; лед; глины средней плотности (ленточные к пластичные); мел; диатомит; сажи; каменная соль (галит); нацело каолинизированные продукты выветривания изверженных и метаморфизованных лород; железная руда охристая

III

Суглинки и супеси с примесью свыше 20% мелкой (до 3 см) гальки или щебня; лесс плотный; дресва; плывун напорный; глины с частыми прослоями (до 5 см) слабосцементированных песчаников и мергелей, плотные, мергелистые, загипсованные, песчанистые; алевролиты глинистые слабосцементированные; песчаники, слабосцементированные глинистым и известковистым цементом; мергель; известняк-ракушечник; мел плотный; магнезит; гипс тонкокристаллический, выветренный; каменный уголь слабый; бурый уголь; сланцы тальковые, разрушенные всех разновидностей; марганцевая руда; железная руда окисленная, рыхлая; бокситы глинистые

IV

Галечник, состоящий из мелких галек осадочных пород; мерзлые водоносные пески, ил, торф; алевролиты плотные глинистые; песчаники глинистые; мергель плотный; не-1гтот1'ыч известняки и доломиты; магнезит плотный; пористые известняки, туфы; опоки глинистые; гипс кристаллический; ангидрит; калийные соли; каменный уголь; бурый уголь крепкий; каолин (первичный); сланцы глинистые, песчано-глинистые, горючие, углистые, алевролитовые; серпентиниты (змеевики) сильно выветренные и оталькованные; неплотные скарны хлоритового и ам-фибол-слюдистого состава; апатит кристаллический; сильно выветренные дуниты, перидотиты; кимберлиты, затронутые выветриванием; мартитовые и им подобные руды, сильно выветренныеые; железная руда мягкая вязкая; бокситы

V

Галечно-щебенистые грунты; галечник мерзлый, связанный глинистым или песчано-глинистым материалом с ледяными прослойками; мерзлые; песок крупнозернистый и дресва, ил плотный,, глины песчанистые, песчаники на известковистом и железистом цементе; алевролиты; аргиллите; глины аргиллитоподобные, весьма плотные, плотные сильно песчанистые; конгломерат осадочных пород на песчано-глинистом или другом пористом цементе; известняки; мрамор; доломиты мергелистые; ангидрит весьма плотный; опоки пористые выветренные; каменный уголь твердый; антрацит, фосфориты желваковые; сланцы глпнисто-слюдяные, слюдяные, тальково-хлоритовые, хлоритовые, хлорито-глинистые, серицитовые; серпентиниты (змеевики); выветренные алъбитофиры, кератофиры; туры серпентинизированные вулканические; дуниты, затронутые выветриванием; кимберлиты брекчиеведные; мартитовые и юл подобные руды, неплотные

VI

Ангидриты плотные, загрязненные туфогенным материалом; глины плотные мерзлые: глины плотные с прослоями доломита и сидеритов; конгломерат осадочных пород на известковистом цементе; песчаники полевошпатовые, кварцево-известковистые; алевролиты с включениями кварца; известняки плотные доломитизированные, скарнированные; доломиты плотные; опоки; сланцы глинистые, кварцево-серицитовые, кварцево-слюдяные, кварцево-хлоритовые, кварцево-хлорито-серицитовые, кровельные; хлоритизированные и рассланцованные альбитофиры, кератофиры, порфириты; габбро; аргиллиты слабо окремнелые; дуниты, не затронутые выветриванием; перидотиты, затронутые выветриванием; амфиболиты; пирокоениты крупнокристаллические; тальково-карбонатные породы; апатиты, скарны эпидото- кальцитовые; колчедан сыпучий; бурые железняки ноздреватые; гематито-мартитовые руды; сидериты

VII

Аргиллиты окремненные; галечник изверженных и метаморфических пород (речник); щебень мелкий без валунов; конгломераты о галькой (до 50%) изверженных пород на песчано-глиниотом цементе; конгломераты осадочных пород на кремнистом цементе; песчаники кварцевые; доломиты весьма плотные; окварцованные полевошпатовые песчаники, известняки; опоки крепкие плотные; фосфоритовая плита; сланцы слабо окремненные; амфибол-магнетитовые, куммингтонитовые, роговообманковые, хлорито-роговообманковые; слабо рассланцованные альбитофиры, кератофиры, диабазовые туфы; затронутые выветриванием: порфиры, порфириты; крупно- и среднезернистые, затронутые выветриванием граниты, сиениты, диориты, габбро и другие изверженные породы; пироксениты, пироксениты рудные; кимберлиты базальтовидные; скарны кальцитосодержащие авгито-гранатовые; кварцы пористые (трещиноватые, ноздреватые, охристые); бурые железняки ноздреватые пористые; хромиты; сульфидные руды; мартито-сидеритовне и гематитовые руды; амфибол-магнетитовая руда

VIII

Аргиллиты кремнистые; конгломераты изверженных пород на известковистом цементе; доломиты окварцованные; окремненные известняки и доломиты; фосфориты плотные пластовые; сланцы окремненные: кварцево-хлоритовые, кварцево-оерицитовые, кварцево-хлорито-эпидотовые, слюдяные; гнейсы; среднезернистые альбитофиры и кератофиры; базальты выветренные; диабазы; андезиты} диориты, не затронутые выветриванием; лабрадориты; перидотиты; мелкозернистые, затронутые выветриванием граниты, сиениты, габбро; затронутые выветриванием гранито-гнейоы, пегматиты, кварцево-турмалиновые породы; скарны крупно- и среднезернистые кристаллические авгито-гранатовые, авгито-эпидотовые; эпидозиты; кварцево-карбонаткые и кварцево-баритовые породы; бурые железняки пористые; гидро-гематитовые руды плотные; кварциты гематитовые, магнетитовые; колчедан плотный; бокситы диаспоровые

IX

Базальты, не затронутые выветриванием; конгломераты изверженных пород на кремнистом цементе; известняки карстовые; кремнистые песчаники, известняки; доломиты кремнистые; фосфориты плаcтовые окремненные; сланцы кремнистые; кварциты магнетитовые и гематитовые тонкополоcчатые, плотные мартито-магнетитовые; роговики амфибол-магнетитовые и серицитизированные; альбитофиры и кератофиры; трахиты; порфиры окварцованные; диабазы тонкокристаллические; туфы окремненные; ороговикованные; затронутые выветриванием липариты, микрограниты; крупно- и cреднезернистые граниты, гранито-гнейcы, гранодиориты; сиениты; габбро-нориты; пегматиты; березиты; скарны мелкокристаллические авгито-эпидото-гранатовые; датолито-гранато-геденбергитовые; скарны крупнозернистые, гранатовые; окварцоваяные амфиболит, колчедан; кварцево-турмалиновые породы, не затронутые выветриванием; бурые железняки плотные; кварцы со значительным количеством колчедана; бариты плотные

X

Валунно-галечные отложения изверженных и метаморфизованных пород; песчаники кварцевые сливные; джеспилиты; затронутые выветриванием, фосфатно-кремнистые породы; кварциты неравномернозерниотые; роговики с вкрапленностью сульфидов; кварцевые альбитофиры и кератофиры; липариты; мелкозернистые граниты, гранито-гнейоы и гранодиориты; микрограниты; пегматиты плотные, сильно кварцевые; скарны мелкозернистые гранатовые, датолито-гранатовые; магнетитовые и мартитовые руда, плотные, с прослойками роговиков; бурые железняки окремненные; кварц жильный; порфириты сильно окварцованные и ороговикованные

XI

Альбитофиры тонкозернистые, ороговикованные; джеспилиты, не затронутые выветриванием; сланцы яшмовидные кремнистые; кварциты; роговики железистые, очень твердые; кварц плотный; корундовые породы; джеспилиты гематито-мартитовыв и гематито-магнетитовые

XII

Совершенно не затронутые выветриванием монолито-сливные джеспилиты, кремень, яшмы, роговики, кварциты, эгириновые и корундовые породы

Как видно из таблицы, для отнесения породы к той или иной категории по буримости к ее названию дополнительно даются несколько определений, уточняющих свойства и состояние пород.
3. ТАМПОНИРОВАНИЕ СКВАЖИН
Тампонированием скважины называется комплекс работ по изоляции отдельных ее интервалов. Тампонирование осуществляется с целью предотвращения обвалов скважины и размывания пород в пространстве за обсадными трубами, разделения водоносных или других горизонтов для их исследования, перекрытия трещин, пустот, каверн, для ликвидации водопроявлений, поглощения промывочной жидкости при бурении.
Рис. 3.1 Общая схема тампонажа:
1 - колонна обсадных труб; 2 - тампонажный материал; 3, 4, 5 - изолируемый, водонепроницаемый и водоносный пласты соответственно.
При бурении на жидкие и газообразные полезные ископаемые, а также на минеральные соли необходимо изолировать пласт полезного ископаемого от вышележащих пластов. Изоляция отдельных горизонтов в скважине необходима для предотвращения проникновения грунтовых и пластовых вод в пласт полезного ископаемого. При подходе к продуктивному пласту проходка скважины прекращается в водонепроницаемом вышерасположенном пласте. Затем в скважину спускают колонну обсадных труб, а кольцевое пространство между низом колонны и стенами скважины заполняют водонепроницаемым материалом. Тампонированием затрубного пространства обсадная колонна предохраняется от сжатия давлением и корродирующего воздействия минерализованных подземных вод.
Применяют постоянное и временное тампонирование. Постоянное тампонирование проводят на длительное время. При постоянном тампонировании околоствольное пространство изолируется от ствола скважины. Временное тампонирование предназначается для изоляции отдельных горизонтов и проводится на срок испытания скважины.
Тампонирование производят для разобщения и изоляции водоносных пластов с разным химическим составом. Например, для изоляции горько-соленой воды от питьевой, изоляции водоносных пластов от нефтегазоносных, для производства опытных нагнетаний воды в пористый пласт, для защиты обсадных труб от коррозии минеральными водами, для устранения циркуляции подземных вод по стволу скважины при извлечении обсадных труб и ликвидации скважины.
В качестве тампонажных материалов используют глину, цемент, глиноцементные смеси с наполнителями, быстросхватывающиеся смеси (БСС), битумы и смолы.
Тампонирование глиной применяют при бурении неглубоких разведочных или гидрогеологических скважин. Если в месте намечаемого тампонирования залегает пласт глины мощностью 2-3 м, то тампонирование осуществляют задавливанием башмака обсадной колонны в глину, предварительно пробурив этот лласт на 0,5-0,6 м.
При отсутствии на забое глины или при недостаточной мощности ее пласта нижнюю часть скважины заполняют вязкой глиной, в башмак обсадной колонны вставляют конусную пробку, которой выдавливают глину в затрубное пространство. По окончании тампонирования пробки разбуривают.
Тампонирование с помощью цемента называется цементированием скважин. Цементирование используют при бурении скважины на воду, нефть, газ и в случаях, когда необходимо получить прочный и плотный тампон на весьма продолжительное время.
Для цементирования скважин используют тампонажный цемент на основе портландцемента.
После смешивания с водой тампонажный цемент должен давать подвижный раствор, перекачиваемый насосами, который с течением времени загустевает и затем превращается в водонепроницаемый цементный камень. Цементный раствор надо изготовлять как можно быстрее, чтобы предупредить его схватывание во время нагнетания в скважину. Готовят цементный раствор в цементомешалках или в специальных цементировочных агрегатах, смонтированных на автомобиле.
Наиболее широко применяемый способ цементирования при разведочном бурении - погружение башмака обсадной колонны в цементный раствор, залитый на забой скважины. Забойное цементирование проводят для изоляции нижней призабойной части колонны обсадных труб. Цементный раствор заливают в скважину через заливочные трубы на высоту 2-3 м.
После извлечения из скважины заливочных труб на забой спускают колонну обсадных труб. После затвердения цементного раствора разбуривают пробку в обсадных трубах и продолжают проходку скважины.
Временное тампонирование скважин производится на непродолжительный период проведения раздельного исследования водоносных (нефте- и газоносных) горизонтов.
Для разобщения отдельных участков скважины, подвергаемых исследованиям (откачки, нагнетания), используют специальные тампоны, называемые пакерами. По принципу действия различают пакеры простого и двойного действия. Пакеры простого действия разделяют скважину на два изолированных друг от друга участка, а двойного действия - на три.
Принцип действия пакера основан на том, что при расширении резиновой манжеты или подушки надежно уплотняется зазор между стенками скважины и колонной труб, на которой опускается тампон. Резиновая манжета (подушка) в скважине может уплотняться механически, с помощью воды или сжатого воздуха.
Гидравлический пакер (рис. 8.2.) с двумя резиновыми камерами 3 (двойного действия) спускают в скважину на колонне труб 1. Вода, подаваемая под давлением через трубки 2 в камеры 3, прижимает их к стенкам скважины. Таким образом скважина разделяется на три участка. Через фильтровую трубу 4 после установки пакера производят опытные откачки или наливы.
Тампонирование без обсадных труб. Для борьбы с поглощением промывочной жидкости без уменьшения диаметра скважины применяют БСС различного состава. Дозировка смеси, содержащей портландцемент, глинистый раствор, жидкое стекло, каустическую соду и воду, зависит от качества цемента и глины. Изменением количества жидкого стекла и каустической соды регулируют свойства смеси и сроки ее схватывания. Через 20-35 мин после приготовления БСС теряет подвижность, а через 1-1,5 ч заканчивается ее схватывание. Используют также тампонажные смеси на основе синтетических смол путем смешивания их с наполнителем и последующим введением в смесь отвердителя.
Тампонажные смеси должны быть доставлены к месту поглощения промывочной жидкости до потери подвижности. Смесь, доставляют одним из следующих способов: 1) заливкой через устье неглубокой скважины; 2) закачиванием через бурильную колонну, 3) в колонковом наборе, закрытом снизу глиняной пробкой, с последующим выдавливанием промывочной жидкостью; 4) с использованием специальных тампонажных устройств.
Доставленную в зону поглощения тампонажную смесь после выдержки в течение времени, необходимого для ее затвердевания, разбуривают.
3.1 Производство работ по цементированию скважины при помощи двух пробок
Если необходима большая высота подъема цемента в затрубном пространстве (на любое расстояние от забоя, вплоть до устья скважины), применяется цементирование под давлением с разделяющими пробками. При этом используют две разделяющие пробки и цементировочную головку. Разделяющие пробки снабжены уплотняющими резиновыми манжетами. Верхняя пробка сплошная, а в нижней выполнен осевой канал, перекрытый стеклянным диском или резиновой перепонкой.
Промывка затрубного пространства. Через отвод 1 (рис. 8.1, а) цементировочной головки нагнетают промывочную жидкость для промывки скважины. При этом колонна обсадных труб подвешена в устье скважины с помощью лафетного хомута и не касается забоя.
Введение в обсадные трубы нижней пробки. Для этого цементировочную головку отвинчивают от колонны и в устье обсадной колонны вводят нижнюю пробку. После этого навинчивают цементировочную головку с закрепленной в ней верхней пробкой
Нагнетание цементного раствора в колонну обсадных труб. Освобождение верхней пробки и ее продавливание вдоль колонны. Вывинчивают выдвижные стопоры 6 цементировочной головки, освобождая этим верхнюю пробку и через отвод нагнетают промывочную жидкость (глинистый раствор или воду) для продавливания пробок. Тогда система, состоящая из двух пробок и цементного раствора между ними, будет перемещаться вниз.
Продавливание цементного раствора в затрубное пространство. Когда нижняя пробка упрется в упорное (стопорное) кольцо, закрепленное между трубами и башмаком, тогда возросшим давлением насоса раздавливается стеклянная пластинка, перекрывающая отверстие в нижней пробке, и цементный раствор через это отверстие продавливается в кольцевое затрубное пространство (рис. 8.1, в). Окончание нагнетания цементного раствора в затрубное пространство соответствует моменту схождения пробок (рис. 8.1, г), определяемому по резкому повышению давления на манометре.
Снятие колонны обсадных труб с лафетного хомута и спуск колонны до забоя.
Для этого колонну с помощью элеватора, крюка, талевой системы и лебедки бурового станка приподнимают, вынимают из корпуса лафетного хомута и спускают колонну до забоя.
Выдерживание колонны обсадных труб под давлением (при закрытых отводах 1 и 2) в течение 12-24 ч до конца схватывания и затвердевания цемента.
Снятие цементировочной головки, разбуривание пробок и упорного кольца, очистка забоя.
Проверка результата тампонирования. Для этого понижают откачкой уровень жидкости в скважине ниже (не менее чем на 10 м) статического уровня тампонируемого водоносного горизонта. Если в течение суток уровень воды в скважине не поднялся (не учитывая поднятия уровня до 1м за счет стенания капель по стенкам труб), то считают, что тампонирование водоносного пласта произведено и об этом составляется акт.
Рис. 3.3 Схема тампонажа скважины цементом по способу «с двумя пробками»:
а - начало закачивания цемента; б - конец закачки цемента; в - начало подъема цемента в затрубное пространство; г - конец цементации
1 - запорный кран; 2 - манометр; 3 - головка для цементации; 4 - верхняя часть пробки; 5 - резиновые манжеты; 6 - нижняя часть пробки; 7 - обсадная труба; 8 - верхняя пробка; 9 - нижняя пробка
3.2 Ликвидационный тампонаж скважины
Пробурив скважину, производят контрольный замер ее глубины, измерение зенитных углов и азимутов через установленные интервалы (обычно 20 м) и геофизические исследования (каротаж). Затем приступают к извлечению обсадных колонн и ликвидационному тампонированию скважины.
Цель ликвидационного тампонирования состоит в том, чтобы изолировать все водоносные пласты и пласты полезного ископаемого, подлежащего разработке, от поступления в них воды по скважине и трещинам из изолируемого водоносного пласта и устранить возможность циркуляции подземных вод по стволу скважины при извлечении обсадных труб и ее ликвидации.
Для ликвидационного тампонирования скважины, пройденной в скальных и полускальных породах, применяют цемент, в породах глинистых - пластичную жирную глину. Скважина, пробуренная с применением глинистого раствора и тампонируемая цементом, перед тампонированием промывается водой для разглинизации. Цементный раствор нагнетают насосом через бурильные трубы, опущенные до забоя. По мере заполнения скважины цементным раствором бурильные трубы приподнимают. После подъема насос и бурильные трубы должны быть промыты водой для очистки от остатков цементного раствора.
При тампонировании глиной ее замачивают, приготовляют густое глиняное тесто, затем с помощью глинопресса или вручную готовят цилиндры из глины. Глиняные цилиндры опускают на забой скважины в длинной колонковой трубе и, приподняв колонковую трубу на 1,0-1,5 м над забоем, выпрессовывают с помощью насоса давлением воды обычно при 1,0-1,5 МПа. Для надежности каждую порцию тампонажной глины трамбуют металлической трамбовкой.
Для ликвидационного тампонирования глубоких скважин хорошо зарекомендовали себя:
1. Глинисто-цементный раствор, изготовляемый на базе глинистого раствора повышенной вязкости (Т = 50-80 с, и = 500- 1500 Н/см2).
На 1 м3 глинистого раствора добавляют 120-130 кг тампонажного цемента и 12 кг жидкого стекла.
2. Для тампонирования законченных скважин применяют отверждаемый глинистый раствор (ОГР) следующего состава: нормальный глинистый раствор - 64%; формалин - 11%; ТС-10 -25%. ТС-10 представляет собой темно-коричневую жидкость, изготовленную из смеси (в надлежащих пропорциях) сланцевых фенолов, этиленгликоля и раствора едкого натра.
В ряде разведочных районов к тампонажным растворам добавляют песок.
При наличии полного поглощения промывочной жидкости на интервале скважины выше зоны поглощения устанавливают деревянные пробки. В устье ликвидированной скважины оставляют обсадную трубу с цементной пробкой. На трубе отмечают номер и глубину скважины.
При выполнении работ по ликвидационному тампонированию следует руководствоваться утвержденными инструкциями или правилами выполнения этого вида работ, действующими в данном регионе. О выполнении ликвидационного тампонирования составляется акт по форме, предусмотренной инструкцией или правилами.
ЛИТЕРАТУРА
1. Воздвиженский Б.И. Разведочное бурение / Б.И. Воздвиженский, О.Н. Голубинцев, А.А. Новожилов. - М.: Недра, 1979. - 510 с.
2. Советов Г.А. Основы бурения и горного дела / Г.А. Советов, Н.И. Жабин. - М.: Недра, 1991. - 368 с.
Размещено на Allbest.ru
...

revolution.allbest.ru

Бурение скважин на воду: технология и способы выполнения работ (видео)

Скважина для добычи воды представляет собой довольно сложное сооружение. Многих сегодня интересует бурение скважин на воду: технология процесса, инструменты и оборудование для выполнения работ. Качество воды из скважины или колодца зависит от их конструкции. От качества выполненных работ зависит срок эксплуатации.

Как пробурить водяную скважину

Перед бурением скважины на воду необходимо выбрать для нее место. Это должен быть участок земли с примерными размерами 4х12 м. Если дом еще не построен, то лучше выбрать место в будущем подвале. Если дом уже поставлен, то бурить лучше поближе к фундаменту. К месту проведения работ нужно обеспечить проезд бурильной установки и автомобиля-водовоза. На расстоянии примерно 2 м от места расположения бура не должно быть никаких электрических проводов. Подобных мер требуют общие правила проведения бурения скважин под воду.

Способов бурения существует несколько. Но при любом из них должны выполняться следующие операции:

  • измельчение породы;
  • выемка измельченной земли наружу;
  • укрепление стенок скважины.

Как происходит измельчение породы? Делается это с помощью специальных породоразрушающих приспособлений. Это может быть взрывная энергия, электрическая или термическая. Но все эти виды применяются довольно редко. Гораздо чаще пользуются другими: шнеками, стаканами, ручными бурами.

Вынимают грунт наружу следующими способами:

  • гидравлическим;
  • механическим;
  • пневматическим;
  • комбинированным.

Гидравлический способ производится водой, раствором глины или другой технической жидкостью. Механический — с применением специальных буров, шнеков, желонок. При пневматическом методе измельченная порода удаляется сильной струей сжатого воздуха. При комбинированном способе пользуются несколькими из этих способов.

Крепление стенок скважины на воду технология рекомендует осуществлять металлическими обсадными трубами. Чаще всего это цельнотянутые трубы на резьбовом или сварном соединении. Применяются изредка и другие варианты. Но не рекомендуется использовать нержавеющую сталь (очень дорого!) и оцинкованный металл.

При выполнении бурения скважины на воду часто используют промывку. Это способ, при котором в скважину подается вода с помощью насосов. Она затем вместе с измельченной породой поднимается и отстаивается в специальном отстойнике. По осевшей породе бурильщики определяют разрез участка. Вода затем делает новый круг. Поднимающийся раствор глины упрочняет стенки и не дает им обвалиться.

Процесс бурения скважины подразумевает последовательную ее обсадку трубами. Завершается бурение скважин на воду их прокачкой, которая ведется до того момента, пока не пойдет совершенно прозрачная жидкость.

Способы бурения на воду

Технология бурения скважины под воду позволяет вести работу несколькими способами:

  • шнековым;
  • роторным;
  • ударно-канатным;
  • ручным.

Рассмотрим каждый из них подробнее.

Шнековое бурение скважин — самый распространенный и доступный способ. Шнек в виде винта входит в почву и разрыхляет ее. Бурить можно только сухой и мягкий грунт. Шнеки совершенно не годятся для плывунов. Этот инструмент разрушает породу и поднимает ее в скважинное устье. Шнеки бывают диаметром от 60 до 800 мм. Бурить ими можно до глубины 60 м, иногда и до 100 м. Шнековое бурение скважин невозможно на скальных грунтах.

Роторный способ — это непрерывное действие инструмента, который называется ротором. Он постоянно вращается. Порода вымывается глинистым раствором. Этот способ сравнительно дешевый и достаточно быстрый. Но в холодную погоду он требует утепления системы, по которой циркулирует вода. Бурение осуществляется с помощью машин:

  • УРБ-2А2;
  • МБУ-2М;
  • УРБ-2,5;
  • УРБ-3АМ.

УРБ-2А2 способна пробурить почву до глубины 55 м, УРБ-2,5 — до 300 м, а УРБ-3АМ — до 500 м.

Ударно-канатный способ является самым трудоемким. Но его не стоит забывать, так как он самый качественный. Порода разрушается после удара тяжелого предмета. Это особой формы заостренный стакан из стальной трубы. Он падает с высоты, ударяется о почву, забирает разрушенный грунт и поднимается. Наверху стакан чистят и снова бросают вниз.

Сама бурильная установка может быть сделана своими руками из труб или из бревен в виде треугольного конуса. Этот конус оборудован лебедкой с тросом. Технология бурения скважин на воду не требует использования глинистого раствора. Но установка обсадных труб должна проводиться своевременно. Такой установкой можно пробурить диаметр 10-30 см. Но глубина не может превышать 10 м. Для бурения можно применять установки УКС-22М2, УГБ-50, УГБ-1ВС.

Ручной способ используется довольно часто. При нем пользуются забивными трубами или шнеком. Трубы разрезают на куски длиной примерно 2-3 м. На концах их нарезается наружная резьба. На нижний конец трубы наваривается наконечник. Он имеет вид конуса, диаметр которого на 1 см больше диаметра трубы. Над наконечником 60-100 см трубы просверливается через 5 см сверлом диаметром 6 мм. Это будет своеобразный фильтр. По мере заглубления трубы она удлиняется с помощью муфт. Но проще поступить другим способом. Нужно для работы приготовить:

  • различные буры;
  • штанги;
  • трубы для обсадки;
  • лебедку;
  • бурильную вышку.

Если скважина не будет очень глубокой, необходимость в вышке отпадает. Процесс выполнения работ довольно прост. Нужно выкопать ямку глубиной около 50 см, установить бур и начать его вращать. Работать лучше вдвоем. Через каждые 50 см бур вынимают из земли и чистят его. Метод этот стоит дешевле остальных, но имеет ограничения по глубине.

Заключение

Технология бурения скважин на воду подразумевает разрушение породы, очистку ствола, укрепление стенок и окончательное оборудование скважины трубами, фильтрами, насосами и кранами для забора питьевой воды. Процесс бурения скважины может быть разным. Глубокие шурфы выполняются с помощью вращательной технологии бурения скважин. Часто пользуются шнековым бурением: технология его довольно проста и применяется на личных участках. При скорости вращения шнеков 250 оборотов в минуту весь процесс происходит довольно быстро.

При любой технологии бурения скважин применяется обсадка специальными трубами для защиты стенок от обвала и от проникновения грязной воды из верхних водоносных слоев.

Неглубокие скважины можно получать ударно-канатным способом. Хорошо работает ручной метод. Любое бурение заканчивается закрытием верха водоносной скважины специальным оголовком. Через него пропускаются необходимые провода, шланги и трубы для доставки воды в дом.

pikucha.ru

Технология бурения скважин на воду



Для автономного водоснабжения загородного участка необходимо выполнить комплекс работ по бурению скважины на воду и монтажу насосного оборудования.

Процесс создания скважины для отдельно взятого региона всегда имеет свои особенности. В данной статье мы разберем технологию бурения скважин на воду в Московской области.

Основные термины

Бурение – это процесс сооружения скважины по средствам разрушения горной породы.

Скважина – это цилиндрическая горная выработка, сооружаемая с помощью специальных инструментов, для которой характерны большая длина и малый диаметр. Основными частями скважины является устье – 1, ствол – 2 и забой – 3 (рисунок 1).

Дебит скважины (не путать с бухгалтерским дебЕтом) – объем воды, который можно добывать из скважины за единицу времени. Измеряется в л/с или м3/ч. Самый важный параметр для подбора водоподъемного оборудования и бесперебойной работы источника.

Скважина на воду бурится непосредственно до водоносного горизонта и в зависимости от глубины и дебита является отличным источником воды, как для хозяйственно-бытовых, так и для промышленных целей.

Рисунок 1. Схема скважины

Скважина на воду, как и любая другая, является сложным техническим сооружением и от соблюдения технологии бурения, а так же правильности выбора конструкции скважины, зависит ее производительность, срок службы и качество воды.

Определяющими факторами при выборе технологии бурения водозаборной скважины являются глубина залегания подземных вод, а так же горные породы, слагающие разрез в месте бурения. Правильно выбранная технология позволит пробурить скважину в минимальные сроки, исключить аварии и осложнения в процессе бурения, а главное, получить максимальный дебит, соответствующий данным геологическим условиям.

Типы скважин

Водяные скважины можно разделить на три основных типа, в зависимости от целевого водоносного горизонта (рисунок 2):

  • неглубокий песок;
  • глубокий песок;
  • известняк (артезианский водоносный горизонт).

Рисунок 2. Расположение водоносных горизонтов

В Московской области расположение водоносных горизонтов колеблется в следующих интервалах:

  • первый (неглубокий песок) – 10 – 30 м;
  • второй (глубокий песок) – 40 – 90 м;
  • третий (известняк) – достигает отметки 220 м.

Скважины на известняк - водоносный комплекс палеозойских каменноугольных отложений, который питает Московскую область и делится на несколько горизонтов:

  • серпуховской (нижний карбон);
  • подольско-мячковский (средний карбон);
  • каширский (средний карбон);
  • касимовский слой (верхний карбон);
  • гжельский (верхний карбон).

Московская область разделена на следующие водоносные районы:

  • южный – уровень воды находится на глубине 10 – 70 м, глубина скважин от 40 до 120 м;
  • юго-западный – имеет небольшой дебит, глубина скважин в среднем 50-70 м;
  • центральный район – самый большой по площади, воды преимущественно карбонатные, карбонатно-сульфатные;
  • восточный - глубина залегания водоносного горизонта – 20 – 50 м, воды сильно минерализованы.

Оценка состояния подземных вод Московской области значительно осложнена большой интенсивностью их использования на относительно ограниченной территории.

Хотя население г. Москвы практически на 100% обеспечивается поверхностными водами, то в области же наоборот, большинство объектов водопотребления используют подземные воды. При этом с каждым годом растет число автономных потребителей – это новые коттеджные поселки, промышленные предприятия и дома отдыха.

По данным на 2011 г. потенциал водных ресурсов Московской области составляет 11.3 млн. м3/сут. Наибольшая эксплуатационная плотность водоотбора (до 2 л/с на км2) расположена в центральной части региона.

В результате высокой интенсивности потребления подземных водных ресурсов на территории области образовалась обширная депрессионная воронка, которая неравномерно охватывает различные водоносные горизонты, а центр ее расположен в г. Москве.

Технология бурения скважин на неглубокий песок

В Московской области водоносные пески залегают на глубине 10 – 30 м, дебит таких скважин составит до 1 м3/ч, чего вполне достаточно для обеспечения небольшого загородного участка. Хотя при правильном инженерном решении такая скважина вполне способна обеспечить небольшой загородный дом. Для этого необходимо использовать накопительную емкость, в которую скважинный насос будет закачивать воду из скважины, а еще один поверхностный насос доставлять воду непосредственно потребителю.

Бурение на неглубокий песок возможно в Волоколамском, Воскресенском, Егорьевском, Мытищинском, Орехово-Зуевском, Подольском, Раменском, Рузском, Солнечногорском районах, подробнее - бурение скважин на воду. Первый водоносный горизонт в этих районах располагается на глубине 10 - 30 м, дебит скважин от 0.5 до 1 м3/ч. Однако в силу высокой плотности промышленных объектов во многих районах качество воды верхних водоносных горизонтов не высоко.

Достоинствами скважин на первый водоносный горизонт является:

  • небольшая стоимость;
  • быстрый процесс бурения;
  • возможность эксплуатации с применением недорогого вибрационного насоса.

Недостатки скважины на неглубокий песок:

  • относительно небольшой срок службы;
  • небольшой дебит;
  • нестабильное качество воды;
  • зависимость уровня воды от сезонных колебаний и соседних водоразборов.

Так же необходимо отметить, что фильтр песчаной скважины необходимо периодически промывать из-за его заиливания. Замене такой фильтр не подлежит, поэтому при выходе его из строя придется бурить новую скважину. Несмотря на наличие фильтра, сложно обезопасить систему водоснабжения песчаной скважины от попадания частиц песка, что может значительно сократить срок службы скважинного насоса.

Для бурения неглубоких скважин по рыхлым породам наиболее популярно шнековое бурение. Шнек представляет собой трубу со спиральными лопастями (рисунок 3).

Рисунок 3. Буровой шнек

Буровой шнек по своей конструкции напоминает штопор, благодаря чему бурение происходит за счет вращательного процесса с погружением в грунт и выемкой выбуренной породы на обратном ходу (Рисунок 4).

Бурение шнеком выполняют при помощи установок на грузовых и легковых автомобилях. Вкручивать шнек в землю можно и вручную, так же с использованием электропривода или мотобура. Ручное бурение позволяет получить воду на участке самостоятельно, однако бурение при помощи электропривода хотя и затратное, но позволяет значительно облегчить и ускорить процесс.

Бурение при помощи шнека возможно только по мягким породам. Если на пути встретятся скальные породы, дальнейшее бурение будет невозможно. Увеличивать длину шнека можно используя стыковки с дополнительными шнеками или штангами.

1 – ствол скважины, 2 – шнек, 3 – выбуренная порода.

Рисунок 4. Схема роторного бурения при помощи шнека

По окончанию бурения стенки скважины укрепляются обсадной трубой. Конструкция скважины на неглубокий песок представляет собой одну обсадную колонну с перфорированной фильтровой частью.

Для обсадки водяных скважин на песок применяют трубы двух видов:

  • металлические;
  • пластиковые.

Классическим решением для обсадки водяной скважины являются трубы из черной стали. Имея толщину стенки 4,5 мм, стальная труба сохранит целостность 10-30 лет, выдерживая любые подвижки грунтов, и при этом не добавит в воду ничего, кроме ржавчины. Однако наличие ржавчины (трехвалентного железа) в воде не является большой проблемой, она легко удаляется при помощи обычного бытового фильтра. Единственный вред, который может нанести ржавчина – это вред насосу, при условии, что он рассчитан только на чистую воду.

Главным недостатком стальных труб является высокая стоимость, поэтому для обсадки скважин на неглубокий песок с относительно небольшим сроком службы использование стальных труб не всегда является целесообразным.

Альтернативой для обсадки неглубоких скважин являются трубы из пластика – нПВХ, ПНД.

Главными плюсами труб из пластика являются неподверженность коррозии и отсутствие каких либо добавок в воду, а так же низкая цена, относительно стальных труб.

Недостатком - их низкая прочность.

В скважинах на песок обязательно применение фильтра. Фильтровая зона, впрочем, как и сама эксплуатационная труба, не подлежит замене, поэтому фактически срок службы скважины зависит от срока службы фильтра. Так же качество и конструкция фильтра играют определяющую роль, в каком количестве воду будет давать скважина.

Конструкция скважин на песок

Классическая конструкция скважины на глубокий и неглубокий песок одинакова и представляет собой обсадную трубу с фильтром. Фильтр может быть установлен «впотай» (рис. 5) или выполнен на обсадной трубе (рис. 6).

Рисунок 5. Конструкция песчаной скважины с фильтром «впотай». Рисунок 6. Обычная конструкция скважины на песок.

Конструкция фильтра для скважины на песок достаточно проста, поэтому определяющее значение в выборе фильтра имеет качество материала, из которого он изготовлен.

Состоит фильтр из следующих элементов (рисунок 7):

  • перфорированная основа - 1;
  • каркас фильтрующего слоя - 2;
  • непосредственно фильтрующий слой – 3.

Рисунок 7. Фильтр для скважины на песок

Главным преимуществом конструкции скважины с кондуктором и установленным «впотай» фильтром (рисунок 5), является надежная изоляция попадающей в скважину воды от поверхностных загрязнений, что невозможно при обычной однотрубной конструкции.

Хотя, в силу технологической сложности данный фильтр и обходится дороже, но он обеспечивает лучшее качество воды, а главное поддается замене, что значительно выгоднее, чем бурить новую скважину.

Главным недостатком такой технологии является сложность установки надежного сальника, предназначенного для предотвращения проникновения песка в скважину и изоляции интервала между рабочей и фильтровой колонной.

Ограничением для установки фильтра «впотай» является наличие мелких пылеватых песков в водоносном слое из-за невозможности создания гравийной обсыпки фильтра, а потому небольшим снижением дебета скважины из-за использования мелких сеток.

Однако в пластах крупнозернистых песков и галечника данная технология возможна, в том числе и в Московской области.

Самая распространенная конструкция скважины на песок в Московской области представлена на рисунке 6.

По типу фильтрующего слоя применяют фильтры трех видов:

  • каркасно-стержневые;
  • сетчатые;
  • комбинированные.

Наиболее эффективными являются каркасно-стержневые фильтры из нержавеющей стали, однако у таких фильтров высокая стоимость. Достаточно хорошую эксплуатационную характеристику имеют сетчатые фильтры из нержавеющей стали, при этом имея гораздо более низкую себестоимость, чем каркасно-стержневые. К тому же сетчатый фильтр можно устанавливать на трубы ПВХ. Благодаря этому такой фильтр является оптимальным для скважин на неглубокий песок.

Фильтры с полимерной сеткой тоже используют, но технологически они уступают металлическим сеткам, так как хуже выдерживают внешние нагрузки.

Фильтр с напылением ПВД (полиэтилен высокого давления) представляет собой перфорированную трубу с размещенным на ней специальным волокнисто-пористым материалом.

Данное покрытие отлично защищает скважину от проникновения из водоносного горизонта твердых частиц, в том числе пылеватых песков. При этом данный фильтр способен обеспечить хорошую проницаемость на обводненных песках, благодаря пористости материала.

Напыление ПВД состоит из трех слоев:

  • поддерживающего – крупноячеистого;
  • рабочего – среднеячеистого;
  • защитного – мелкоячеистого.

Преимуществом данного фильтра является его универсальность: равноценно работает в щелочной и кислой среде, экологически безопасен и не токсичен, не выделяет в воду химических элементов, защищен от солей жесткости. Благодаря волокнисто-пористому барьеру прекрасно защищает скважинный насос от любых механических примесей.

Для повышения дебита скважины, увеличения срока работы фильтра, уменьшению процесса кольматации (заиливания) выполняют гравийную обсыпку фильтра (рис. 8).

Рисунок 8. Гравийная обсыпка фильтра

Гравийную обсыпку можно выполнить только при роторном бурении с промывкой. В некоторых случаях вместо гравия возможно использование крупнозернистого песка. Прослойка гравия между фильтром и водоносным песком увеличивает площадь фильтра, предотвращает попадание пылеватых песков, снижает абразивное воздействие песка на сетку и продлевает срок работы фильтра в несколько раз.

Результативное бурение скважин на песок осуществимо при соблюдении вышеуказанной технологии и использовании высококвалифицированных кадров.

Технология бурения скважин на глубокий песок

В некоторых районах Московской области ближайший водоносный горизонт располагается на глубине больше 30 м.

Например, в Клинском районе Московской области не везде есть неглубоко залегающие водоносные пески. При этом скважины, пробуренные на глубокий песок (от 40 м), дают дебит до 2 м3/ч. Так же скважины на глубокий песок бурят в Истринском, Солнечногорском, Дмитровском, Пушкинском и Сергиево–Посадском районах.

Для примера, в Ярославской и Белгородской области почти не бурят скважины на известняк, в связи с тем, что залегают водоносные известняки достаточно глубоко, на 150 – 250 м. Соответственно такие скважины требуют более сложной конструкции, применения двух-трех обсадных колонн разного диаметра, а так же более мощного скважинного оборудования.

Скважины на глубокий песок имеют ряд преимуществ перед неглубокими, а так же артезианскими скважинами:

  • дебит скважин на глубокий песок выше, чем на неглубокий (1,5 – 2.5 м3/ч);
  • качество воды лучше (стабильней), чем в неглубоких скважинах;
  • время бурения и стоимость ниже, чем для артезианских;
  • в отличие от бурения глубоких артезианских скважин, не требуется лицензия на недропользование.

Однако проблемы с использованием фильтра для песчаной скважины остаются те же, что и для неглубоких песчаных скважин.

Наиболее оптимальным методом для проходки скважины на глубокий песок является роторное бурение.

Бурение роторным способом выполняется с помощью рамной буровой вышки, на которой крепится подъемное оборудование, обеспечивающее возможность поднимать и опускать бурильную колонну. Установка роторного бурения может быть выполнена на базе автомобиля (рисунок 9).

Рисунок 9. Установка роторного бурения

При роторном способе бурения горная порода разрушается вращающимся долотом, на которое подается осевая нагрузка от ротора при помощи бурильной колонны, которая состоит из бурильных труб, соединенных между собой муфтами. Верхний вал колонны через вертлюг, обеспечивающий свободное вращение груза, подвешен к талевой системе. Данная система обеспечивает подачу буровога раствора по бурильным трубам на долото. В результате выбуренная порода (шлам) поднимается на поверхность вместе с буровым раствором.

Схема роторного бурения представлена на рисунке 10.

Рисунок 10. Схема роторного бурения. 1 - долото, 2 - бурильная колонна, 3 - бурильная труба, 4 - пол буровой установки, 5 - ротор, 6 - лебедка, 7 - ведущая бурильная труба, 8 - вертлюг, 9 - крюк, 10 - талевый блок, 11 - кранблок.

Технология бурения скважин на известняк

В пределах Московской области водоносные известняки залегают крайне неравномерно, от 20 м на юге, до 200 м на севере, однако наиболее распространено распространение артезианского горизонта на глубине свыше 100 м.

Благодаря большой глубине залегания артезианских вод и, соответственно, высокому пластовому давлению водяная скважина на известняк может быть напорной, иногда самоизливающейся.

Преимущества артезианской скважины:

  • возможность бурения в любом месте;
  • стабильное качество воды;
  • долгий срок эксплуатации;
  • высокая производительность.

Недостатки артезианской скважины:

  • технологическая сложность бурения;
  • высокая стоимость бурения;
  • возможна высокая минерализация воды;
  • юридическим лицам необходима лицензия на пользование недрами.

Благодаря повсеместности распространения водонасыщенных известняков, а так же высокому дебиту артезианских скважин, такая скважина является оптимальным решением для монументальных строений, жилищных кооперативов, а так же промышленных целей.

Бурение артезианских скважин является достаточно сложным процессом, в связи с глубиной и твердостью горных пород. В зависимости от геологических условий в разных районах Московской области в процессе бурения возникают те или иные проблемы.

В Волоколамском районе трудности могут создать отложения гранита, встречающиеся вблизи Сычево и Чередово. Хотя в ряде населенных пунктов водоносные известняки расположены не глубоко, от 30 до 50 метров. Так же не глубоко залегают водоносные известняки вблизи русла Москвы-реки в Воскресенской районе. В Каширском районе первые известняки залегают на глубине порядка 40 м, однако они не обладают достаточной водоотдачей и лишь осложняют дальнейшее бурение до водонасыщенных карбонатных пород, расположенных на глубине 70 – 140 м. К тому же в разрезе встречаются неустойчивые породы, что приводит к увеличению расхода бурового раствора. Необходимо выбирать обсадных трубы большего диаметра для перекрытия этих пород. В Лотошинском, Рузском и Одинцовском районах бурение осложняется попадающимися в породе валунами. В разрезе пород Чеховского района встречаются осыпающиеся породы известняка, требующие надежной металлической обсадки.

Оптимальным решением для бурения артезианских скважин является роторное бурение. Благодаря одновременному воздействию на породоразрушающий инструмент осевой нагрузки и крутящего момента, производительность бурения значительно повышается.

Гидроударное бурение подходит для пород V-XII категории. Гидроударник устанавливается между колонковым набором и бурильными трубами. По средствам бурильных труб на долото подается буровой раствор и вращение. Промывочная жидкость удаляет шлам с забоя, охлаждает долото, а так же является приводом ударной машины. При увеличении расхода бурового раствора возрастает энергия единичного удара, что приводит к увеличению интенсивности разрушения породы.

В относительно мягких породах увеличение скорости осевой нагрузки увеличивает скорость бурения, а в твердых абразивных породах при повышении осевой нагрузки повышается износ породоразрушающего инструмента.

В твердых породах целесообразно применение пневмоударника. Пневмоударное бурение является разновидностью ударно-вращательного, с применением погружного бурильного молотка – пневмоударника, работающего на энергии сжатого воздуха. Поршень-боек пневмоударника наносит поступательно-возвратные движения по хвостовику, являющемуся частью долота, которое вращается вместе с пневмоударником. Очищение забоя от выбуренной породы происходит с помощью продувки скважины. По мере углубления скважины буровой снаряд наращивается.

Схема пневмоударного бурения представлена на рисунке 11.

Рисунок 11. Схема пневмоударного бурения 1 – долото, 2 – пневмоударник, 3 – буровой инструмент, 4 – вращатель с электромотором, 5 – механизм подачи, 6 – шланг подачи сжатого воздуха, 7 – компрессор, 8 – пульт управления.

Конструкция скважин на известняк

Конструкция скважины на известняк может быть четырех видов:

  • классическая – включает в себя обсадную трубу, доходящую до водоносного известняка, а далее открытый ствол меньшего диаметра (подходит для крепких известняков);
  • с двойной обсадкой – состоит из обсадных труб двух диаметров: большего в верхней части до водоносного горизонта и меньшего в водоносном горизонте (рисунок 12);
  • с кондуктором – применяется, когда необходимо отсечь четвертичные отложения обсадной трубой большего диаметра;
  • телескопическая – конструкция состоит из трех и более обсадных колонн разного диаметра, где каждая последующая колонна диаметром меньше предыдущей, применяется в районах со сложной геологией, чтобы отсечь неустойчивые и водоносные породы.

В зависимости от геологического разреза района бурения, глубины залегания водоносного пласта предпочтительнее та или иная конструкция скважины или комбинация нескольких конструкций.

Давайте рассмотрим несколько примеров.

Пример 1: Классическая двухтрубная конструкция с пластиком.

Рисунок 12. Конструкция скважины с двойной обсадкой

Технологию бурения можно описать следующим образом:

  • Пробурив растительный слой, толщу песка с включениями гравия, толщу глины, доходим до известняка (см. рис. №12). По характеру бурения, скорости проходки, визуальному контролю разбуренной породы, поднятой (вымытой буровым раствором) на поверхность, определяем литологический разрез.
  • Немного подбуриваем известняк, поднимаем инструмент.
  • Производим обсадку металлической трубы на кровле известняка.
  • Меняем долото, промываем ствол скважины от бурового раствора. Использовать для дальнейшего бурения необходимо чистую воду (без бентонита).
  • Продолжаем бурение по известняку внутри металлической трубы.
  • Пройдя слой сухого известняка, доходим до трещиноватого, водоносного известняка. Трещины в известняке можно определить по поглощению (провалу) циркулирующей воды во вскрытую трещину. Буровой инструмент тоже может провалиться на 10-15 см.
  • Поднимаем буровой инструмент, меняем долото на меньший диаметр.
  • Продолжаем бурение, вскрываем трещиноватый известняк, внимательно контролируем процесс, чтобы определить наличие в известняке прослоек мергеля, глин, песка, если таковые будут.
  • Вскрыв 5,10 или 20 метров водоносного известняка, производится обсадка пластиковой трубы. Глубину вскрытия известняка определяет буровой мастер по косвенным признакам, в зависимости от мощности, толщи, водоносного горизонта, необходимого количества воды и литологических особенностей.

Поскольку прослоек глин и песка в известняке нет, известняк труднобуримый, неразрушенный, пластиковую трубу обсаживаем до водоносного известняка, трещины вскрываем открытым стволом.

Пример 2: Однотрубная конструкция с осложнениями.

Рисунок 13. Однотрубная конструкция скважины

Процесс бурения до известняка описан в примере №1. При бурении по известняку и построению водоприемной части есть отличия. Давайте их рассмотрим.

Если не перекрыть глину и песок в известняке и собрать конструкцию как в 1-ом примере, мы получим мутную воду с песком.

Она может идти постоянно или возникать после перестоя (отсутствия разбора воды из скважины).

Буровой мастер, не внимательно отслеживающий процесс бурения, может не заметить прослойку глины и песка, собрав конструкцию как в примере №1. Выполнив опытную откачку и обнаружив муть и песок, будет вынужден демонтировать пластик, установить металлическую трубу меньшего диаметра для перекрытия прослойки песка. Обязательно герметизируется переход между трубами пакером для исключения возможности поступления мутной воды с песком по переходу между трубами.

Рисунок 14. Конструкция скважины с осложнениями в процессе бурения.

Прослойку глины можно перекрыть пластиковой трубой, прослойку песка пластиковой трубой перекрыть проблематично. Поэтому используется металлическая труба меньшего диаметра. Если начальная труба Ø133 мм, то внутрь устанавливают трубу Ø114 мм. В трубу Ø114 мм влезает ПНД труба диаметром 94 или 90 мм, в 94 трубу можно установить скважинный насос диаметром 3 дюйма (76 мм). В ПНД Ø90мм – насос с нормальными напорными характеристиками установить уже не получится.

Рисунок 15. Конструкция «телескоп».

При формировании уровня воды выше перехода 133-114 (не меньше чем 15-20 метров, для возможности установки насоса выше перехода), можно собрать конструкцию с пластиком – 90 (94) ПНД внутри 114 металла и 117 внутри 133 (см. рисунок №14).

Давайте рассмотрим технологию бурения скважины с учетом наличия в разрезе неустойчивых пород. Рассмотренная ниже ситуация характерна для глубоких скважин (150-200 м), разрезов с валунами и скважин с промежуточными водоносными горизонтами. С целью поинтервального укрепления пластов применяется конструкция «телескоп» (рисунок №15).

Заказчик ставить задачу – пробурить скважину на известняк и собрать конструкцию 133/117.

Порядок работ следующий:

  1. Начинаем бурить скважину под 133 металлическую трубу долотом 146 или 155 (161) мм. Но, не дойдя до известняка, встречаем в разрезе валуны вместе с водоносным песком.
  2. При бурении ниже валунов начинаются прихваты инструмента – выпадают камни на направляющую с долотом и заваливают его, мешают продолжать дальнейшее бурение, блокируют, не дают поднять инструмент из ствола скважины.
  3. При попытке согласовать установку кондуктора с заказчиком, он не дает разрешение на увеличение стоимости скважины и готов к результату без пластика. Принимаем решение изолировать неустойчивые породы, установив в разбуренный ствол трубу диаметром 133 мм.
  4. Дальнейшее бурение продолжаем внутри трубы долотом 124 мм.
  5. Дойдя до известняка, устанавливаем металлическую трубу 114 мм. Герметизируем переход между трубами пакером, для исключения перетока грязи и воды в щель между трубами.
  6. Промываем ствол скважины от бурового раствора. Разведываем дальнейший разрез в известняке долотом 76 мм на чистой воде.
  7. При вскрытии известняка обнаруживаем в нем прослойки глин, верхняя часть водоносного известняка разрушена.
  8. Принимаем решений изолировать прослойки глин глухой металлической трубой Ø89 мм, а разрушенный известняк оборудовать перфорированной трубой.
  9. Для этого разбуриваем вскрытый известняк долотом 98 мм - до крепкого известняка. Поднимаем буровую колонну и производим обсадку 89 трубы.
  10. В крепком известняке водоприемную часть оставляем открытым стволом Ø76 мм.

В такой ситуации конструкцию с пластиком собрать не представляется возможным. Так как вода сформировалась на уровне 114 трубы, ниже находится металл Ø89 мм. В 89 трубу не влезает ПНД труба, в которую можно установить насос. Заказчик будет поставлен перед фактом, что реализовать запланированную конструкцию 133/117 не удалось. Стоимость скважины будет пересчитана. Срок работы, получившийся скважины, будет значительно меньше запланированных 40- 50 лет.

Именно поэтому, мы рекомендуем использовать начальную трубу Ø159 мм или использовать кондуктор в районах со сложной геологией. Это более результативно и долговечно, позволяет практически при любом осложнении собрать конструкцию с пластиковым вкладышем внутри трубы - смотри рисунок №16.

Рисунок №16. Конструкция скважины с кондуктором.

Обращаясь в буровую компанию необходимо четко ставить задачу по дебиту скважины, диаметру планируемого насоса, его мощности.

Специалисты начинают планировать конструкцию скважины с фильтра и прифильтровой зоны в зависимости от литологического разреза и мощности водоносного горизонта. То есть начинают планировать конструкцию снизу вверх, а не наоборот.

Если говорить про начальные диаметры и усредненные параметры скважины с хорошей геологией, то примерно можно назвать следующие значения:

  • Труба Ø133 мм – обеспечит дебит до 3 м3/ч, подойдет для обеспечения водой одного или двух коттеджей;
  • Труба Ø 159 мм – обеспечит дебит до 8 м3/ч, вариант для большого дома с дополнительными строениями или для нескольких домовладений;
  • Труба Ø 219 мм – обеспечит дебит до 15-40 м3/ч, такие скважины являются промышленными и способны обеспечить водой промышленный объект или небольшой поселок.

Для желающих изучить этот вопрос более плотно мы советуем использовать дополнительную литературу – Башкатов Д.Н., Роговой В.Л., БУРЕНИЕ СКВАЖИН НА ВОДУ. Эту книгу мы рекомендуем как настольное пособие для начинающих буровиков. К сожалению, она написана в 1976 году и не учитывает некоторые современные материалы и технологии.

Выводы: процесс бурения скважины – сложный технологический процесс. Бурение будет успешным, а скважина сохранит свою работоспособность несколько десятилетий при условии:

  1. Владения буровой организацией исчерпывающей информацией о геологических особенностях участка, где будут выполняться работы. Необходим опыт работ в этом месте.
  2. Наличия в штате профессиональных буровиков, способных ответственно, щепетильно относится к буровому процессу и к строительству правильной конструкции скважины.
  3. Добросовестности и ответственности организации. Сегодня, в погоне за максимальной выгодой, многие теряют эти важные человеческие качества, придумывая разные схемы обмана заказчиков.
  4. Добросовестности и ответственности буровой бригады. Желание быстро нажиться часто приводит к обману работодателя и заказчика одновременно. Продажа на сторону недоустановленных труб в скважину, бурового инструмента. Сговор с заказчиком по глубине скважины (давай напишем 30, а сделаем 50, 20 метров пополам…) лишая тем самым гарантии заказчика.
  5. Организация должна владеть материально-технической базой. Выполнять ремонт техники, изготавливать под свои нужды детали для скважин (выточить переход, изготовить пакер, нарезать резьбу), складировать необходимый инструмент и оборудование. Иметь квалифицированный штат сотрудников способных обеспечивать функционирование базы и обеспечивать непрерывный рабочий процесс буровых и монтажных бригад.

Сочетание всех этих критериев - залог строительства скважины по технологии и получения надежной скважины на Вашем участке. Именно этим критериям соответствует компания «Водная Помощь».

Голосов: 4

Комментарии

www.water-help.ru

Технология бурения скважин

Бурение, процесс сооружения горной выработки цилиндрической формы - скважины, шпура или шахтного ствола - путём разрушения горных пород на забое. Осуществляется, как правило, в земной коре, реже в искусственных материалах (бетоне, асфальте и др.). В ряде случаев процесс включает в себя крепление стенок скважин (как правило, глубоких) обсадными трубами с закачкой цементного раствора в кольцевой зазор между трубами и стенками скважин.

Область применения бурения многогранна: поиски и разведка полезных ископаемых; изучение свойств горных пород; добыча жидких, газообразных и твёрдых (при выщелачивании и выплавлении) полезных ископаемых через эксплуатационные скважины; производство взрывных работ; выемка твёрдых полезных ископаемых; искусственное закрепление горных пород (замораживание, битумизация, цементация и др.); осушение обводнённых месторождений полезных ископаемых и заболоченных районов; вскрытие месторождений; прокладка подземных коммуникаций: сооружение свайных фундаментов и др.

Буровая скважина проходит сквозь толщу горных пород, для того чтобы добраться до желаемого объекта - залежи рудного тела, нефти, газа, водоносного горизонта и т.д. Таким образом, скважина это искусственная выемка в горном массиве пород. В то же время, имеются близкие по назначению, но иной формы выемки - горные выработки (шахты, штольни, карьеры), от которых скважина существенно отличается наименьшим объемом выемки на глубину проходки. В этом смысле она наиболее экономичная и самая быстрая по достижению объекта вскрытия. В поперечном сечении скважина имеет форму круга, так как бурение осуществляется обычно способом вращения, при этом диаметр круга очень мал (75-300 мм) по сравнению с длиной скважины при глубине бурения в сотни метров и даже несколько километров (9 и более км). При бурении разведочных скважин на твёрдые полезные ископаемые их диаметр обычно 59 и 76 мм, на нефть и газ - 100-400 мм.

Бурение развивалось и специализировалось применительно к трём основным областям техники: наиболее глубокие скважины (несколько км) бурятся на нефть и газ, менее глубокие (сотни м) для поисков и разведки твёрдых полезных ископаемых, скважины и шпуры глубиной от нескольких м до десятков м бурят для размещения зарядов взрывчатых веществ (главным образом в горном деле и строительстве).

Как разведочные, так и эксплуатационные первые скважины закладывают в предполагаемых наивысших точках обнаруженной благоприятной структуры, чтобы наверняка вскрыть залеж полезного ископаемого. По полученным из первых скважин сведениям выбирают местоположение последующих скважин, перед которыми ставится более широкая задача - определить размеры залежи, эффективную мощность продуктивных пластов, изменение по простиранию их пористости и проницаемости, уточнить структурную карту месторождения (карту изогипс), получить данные для определения термодинамических параметров продуктивных пластов и построения карт изобар и изотерм, а в конечном итоге - подсчитать или уточнить промышленные запасы месторождения и обосновать или уточнить систему его разработки (построить карту разработки).

При этом скважины могут быть заложены как в пределах залежи так и за ее пределами.

После выбора места заложения составляют проект этой скважины, основными разделами которого являются:

- конструкция (соотношение диаметров и длин ствола, его ориентация; интервалы спуска, диаметры, толщина стенок и марки стали обсадных колонн; интервалы цементирования; тип и конструкция фильтра; другие необходимые элементы скважины);

- технология проводки ствола (типы и размеры породоразрушающего инструмента - долот; режимы бурения - интенсивность циркуляции очищающего забой и ствол от вырубленной породы агента, скорость вращения долота, усилие со стороны долота на разрушаемый им забой; тип и физические свойства очищающего скважину агента; тип, соотношение диаметров и длин секций бурильной колонны; тип и размер забойного двигателя в случае его использования);

- технология вскрытия продуктивных слоев (тип и физические свойства промывочного агента при проводке ствола в фильтровой зоне; соотношение давлений в скважине и пласте; способ закрепления ствола в фильтровой зоне и другие технологические параметры и технические средства);

- технология крепления ствола скважины (спуск и цементирование кондуктора, промежуточных и эксплуатационной колонн; конструкция низа эксплуатационной колонны и фильтра; тип цемента, физические свойства цементного раствора в жидком и затвердевшем состоянии, интенсивность его транспортировки в заколонное пространство; способ цементирования колонн и оснастка их дополнительными устройствами; длительность ожидания затвердевания цементного раствора; способ испытания качества крепления ствола скважины);

- технология испытания скважины как объекта эксплуатации (геометрические размеры колонны лифтовых труб; оборудование устья скважины эксплуатационной арматурой; режимы и длительность исследования производительности скважины);

- наземное грузоподъемное и приводное оборудование для бурения ствола (вышка; ротор для вращения бурильной колонны; талевая система и лебедка для выполнения спускоподъемных операций; двигатели для привода лебедки и ротора; вспомогательное оборудование и приспособления);

- поверхностная циркуляционная система для приготовления, регулирования свойств и очистки промывочного агента (емкость с перемешивателями; блок приготовления, утяжеления и регулирования свойств; блок очистки - вибросита, гидроциклоны, центрифуги);

- буровые насосы (марка, диаметры цилиндров, производительность, тип и мощность приводных двигателей).

По целевому назначению буровые скважины делятся на три основные группы: геологоразведочные, эксплуатационные и технические.

1)Геологоразведочные скважины :

-Картировочные (изучение коренных пород, скрытыми под наносами)

vuzlit.ru


Смотрите также