Исследование скважин оборудованных уэцн


Исследование скважин оборудованных УЭЦН

Сущность методики заключается в следующем. В колонну НКТ на выкид погружного центробежного электронасоса спускают на проволоке глубинный манометр. Производится запись давления на выкиде насоса Pвык1 при нормальном режиме работы с подачей Q1 и давлением на приёме Pпр1 (при открытой манифольдной завижке). После этого манифольдная задвижка на устье скважины быстро закрывается. Глубинный манометр фиксирует кривую изменения давления на выкиде насоса. По манометру на устье скважины контролируется рост устьевого давления за счёт продолжающейся подачи насоса и сжатия газожидкостной смеси в НКТ. Стабилизация устьевого давления Pу2 говорит о прекращении насосом подачи (Q2=0). В этот момент глубинный манометр регистрирует давление на выкиде насоса Pвык2 при давление на приёме Pпр2 (Pпр2=Pпр1 из-за инерции пласта и скважины).

После подъёма глубинного манометра и расшифровки бланка, определяется давление на выкиед насоса Pвык2 и записывается уравнение: Pпр2=Pвык2-Pн2.

Pн2 – давление создаваемое насосом при Q2=0.

После некоторых преобразований получаем:

- напор насоса на режиме нулевой подачи

- потери напора на преодоление веса гидростатического столба.

Данное выражение используется для расчёта давления на приёме ЭЦН.

Безтрубная эксплуатация скважин УЭЦН

Электродвигатель сверху, кабель не будет мешать можно поставить насос большего размера, НКТ необязательна, меньше железа т.е экономия, скважина должна быть герметична.

Эксплуатация скважин УЭВН

Установка насосная винтовая скважинная предназначена для принудительной добычи нефти из скважин. Винтовой насос обеспечивает добычу жидкости различных качеств: от наименьшей вязкости до наибольшей (тяжелая нефть), от чистой нефти до нефти, загрязненной абразивными материалами, имеющимися в скважинах. Винтовой насос не реагирует на высокие значения газового фактора, успешно перекачивает двухфазные (нефть-газ) системы. Температура перекачиваемой жидкости до 90°С.

Эти насосы применяются гораздо реже чем ШСН и УЭЦН.

Винтовой насос состоит из ротора в виде простой спирали {винта} с шагом и статора в виде двойной спирали с шагом , в два раза превышающим шаг ротора. Основными параметрами винтового насоса являются диаметр ротора, длина шага статора и эксцентриситет (расстояние между осями статора и ротора).

Полости сформированные между статором и ротором разделены. При вращении ротора эти полости перемещаются как по радиусу, так и по оси. Перемещение полостей приводит к проталкиванию жидкости снизу вверх, поэтому иногда этот насос называют насосом с перемещающейся полостью.

Применение ПВН весьма эффективно при откачке высоковязких нефтей. Они менее чувствительны к присутствию в нефти газа, а попадание последнего в рабочие органы не вызывает срыва подачи.

Эксплуатация скважин УГПН.

Гидропоршневыми насосными установками называют гидроприводные установки с наземным силовым насосом и скважинным агрегатом, состоящим из непосредственно соединенных поршневого насоса и поршневого гидравлического двигателя с золотниковым механизмом. Гидропоршневой насос может обеспечить подачу жидкости с очень больших глубин (до 4000 м) при достаточно высоком КПД до 0,6.

Работа гидропоршевой установки происходит следующим образом Рабочая жидкость, нагнетаемая с поверхности силовым насосом, подается через трубопровод в гидродвигатель насоса. Под давлением рабочей жидкости поршень двигателя совершает возвратно-поступательные движения, приводя в движение жестко связанный с помощью штока поршень насоса.

В качестве рабочей жидкости гидропривода обычно используют нефть, очищенную от свободного газа, воды и механических примесей и обработанную, если это необходимо, химическими веществами -деэмульгаторами, ингибиторами и т.п. Применяют также воду со специальными добавками.

Эффект применения этих насосных установок состоит в отсутствии штанг и кабеля, что существенно для наклонно направленных скважин, а так­же в отсутствии спуска-подъема НКТ, так как глубинный агре­гат может быть сбрасываемого типа.

Поднимают агрегат давлением рабочей жидкости из кольце­вого пространства.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

zdamsam.ru

Добыча нефти и газа

Контрольные, курсовые и дипломные работы! От лучших авторов!

Рейтинг:   / 0

Организация мониторинга разработки нефтяных месторождений геофизическими и гидродинамическими методами является важным направлением при создании современных проектов извлечения нефти. Информация, попадающая в базы добывающих предприятий, имеет низкое качество по причине нестабильных и нерегулярных исследований по существующим методикам, которые в свою очередь дают приближённые данные и формируют сущность решений, принимаемых в процессе разработки месторождений.

Развитие нефтяной промышленности, связанное с эксплуатацией скважин при помощи погружных электроцентробежных насосов, влечет за собой развитие технологий для контроля за разработкой месторождений механизированного фонда.

Для исследований скважин, оборудованных электроцентробежными насосами (ЭЦН), применяются блоки погружной телеметрии, измеряющие давление и температуру в месте расположения насоса

Существует несколько способов исследования скважин, в том числе оборудованных ЭЦН, в рабочем режиме:

1. Перевод скважин в фонтанный режим и спуск приборов через НКТ; 2. Возбуждение скважины компрессором (эрлифт); 3. Спуск приборов малого диаметра до насоса, выход через специальное клапанное устройство в зазор между ЭЦН и колонной и спуск по этому зазору под насос; 4. Предварительный спуск комплексного прибора на кабеле ниже интервала установки ЭЦН.

С 1979 года ОАО «Пермнефтегеофизика» развивало 4-й способ исследования скважин, который имеет некоторые преимущества перед остальными. При использовании этой технологии получают достоверную промыслово-геофизическую информацию в реальном времени непосредственно в процессе работы скважины с ЭЦН. 

Прибор свободно перемещается от приема насоса до забоя. Отсутствуют ограничения на габариты комплексного скважинного прибора, что позволяет использовать аппаратуру с наилучшими метрологическими характеристиками. В колоннах с диаметром 146 мм (внутренний диаметр 130 мм), которыми обсажено основное количество скважин, достаточно зазора между колонной и ЭЦН (диаметр насоса 103 мм) для беспрепятственного прохождения геофизического кабеля, при помощи защитных устройств-децентраторов (рис. 1). Они просты в изготовлении, обеспечивают сохранность и свободу движения геофизического кабеля. Работа установки ЭЦН полностью не зависит от системы защитных устройств и движения геофизического кабеля с прибором.

Рисунок 1.  Схема децентратора: А – вид сбоку; Б – вид сверху. 1 – корпус децентратора; 2 – лопасти; 3 – отверстия для шплинтования геофизического кабеля; 4 – отверстия для крепления децентратора; 5 – место укладки силового кабеля погружного насоса; 6 – место укладки геофизического кабеля

В 1979 году были впервые разработаны и опробованы методика и защитные устройства для совместного спуска ЭЦН и геофизического прибора на кабеле.

 Основной недостаток 4-го способа – это невозможность извлечения геофизического прибора на кабеле без подъема установки ЭЦН, но при получении высококачественной комплексной информации этот недостаток компенсируется. Кроме того, нет необходимости поднимать оборудование из скважины, прибор на кабеле остается в интервале перфорации до следующего текущего ремонта скважины или замены насоса. В межремонтный период геофизическая партия в любое время может прибыть на скважину для периодических исследований без привлечения бригады КРС, что компенсирует задалживание кабеля. 

 Рисунок 2. Схема исследования скважин по технологии предварительного спуска приборов под насос: 1 - глубинный насос; 2 - кабель; 3 - эксцентричная планшайба; 4 - скважинный прибор; 5 - децентраторы; 6 - продуктивный пласт; 7 - обсадная колонна; 8 - НКТ; 9 - сальниковый ввод

Данная технология подразумевает следующие основные операции:

• спуск прибора и запись фоновых параметров; • сборка и опрессовка электродвигателя ПЭД; • установка децентратора на корпус ЭЦН; • спуск установки ЭЦН на НКТ с креплением защитных децентраторов; • монтаж планшайбы с двумя сальниковыми вводами; • непосредственно исследования в зависимости от решаемой задачи.

Опыт показывает, что необходимо оборудовать некоторую сеть скважин геофизическими приборами, местоположение которых можно менять, что помимо оптимизации режимов эксплуатации отдельных скважин, позволит создавать постоянно обновляющуюся базу данных для выполнения эффективного контроля и регулирования процессов разработки месторождения. Среди решаемых задач особое внимание уделяется контролю энергетического состояния залежи и, в частности, получению реальных значений забойных давлений, что является важным фактором для планирования обоснованных геолого-технических мероприятий в скважинах и количественной оценки их эффективности.

Отметим, что в скважинах механизированного фонда основным источником информации для вычисления Pзаб. являются результаты измерений динамических уровней при помощи эхолотов. На результаты вычисления глубины нахождения уровня жидкости в межтрубном пространстве, определяемой по замерам эхометрирования и значений плотности жидкости в интервале от отметки газожидкостного раздела (ГЖР) до точки определения забойного давления, оказывает влияние значительное число факторов. Определение плотности является наиболее трудной задачей и требует учета условий выноса жидкости из-под глубинного насоса и характера замещения её на попутно добываемую воду, относительных скоростей всплытия газа и падения воды, изменений плотности смеси и скорости восходящего потока в результате выделения свободного газа и др.

В опорной сети механизированных скважин, оборудованных геофизическими приборами, предоставляется возможность изучения распределения плотностей флюида в межтрубном пространстве и под насосом в работающих и остановленных скважинах. В результате можно получить достоверные эмпирические зависимости для вычисления точных значений забойных и пластовых давлений.

Кроме опорной сети скважин, оборудованных геофизическими приборами, необходимо использовать программно-управляемую аппаратуру для постоянного измерения параметров работы скважины, при этом регистрация выполняется непрерывно в автоматическом режиме. С этой целью была разработана технология геофизического информационного обеспечения, которая позволяет выполнять автономные измерения параметров пласта и технологических параметров работы оборудования в течение всего межремонтного периода скважин.

Реализовано два способа программного управления работой системы – управление глубинным прибором при помощи наземного блока управления, питания и индикации. Регистрация информации производится в автоматическом режиме. Участие оператора, во-первых, предполагается только для считывания данных из памяти приборов, а во-вторых, предусматривается передача результатов измерений и по каналам связи. Работа аппаратуры, имеющей также автономное питание, возможна в нескольких режимах, выбор которых, в зависимости от категорий скважин и решаемых задач, осуществляется автоматически или под управлением с поверхности.

Опытные работы, выполненные при помощи программно-управляемой аппаратуры, показали наличие значительных расхождений измеренных и расчетных значений давлений. В основу методики исследований были положены многократные, согласованные во времени, прямые измерения забойных давлений глубинным прибором и времени прохождения звуковой волны (эхометрирование). Для исключения ошибок в определении скорости звука в затрубном пространстве с измерением времени прохождения звуковой волны до отметки ГЖР определялась и глубина его нахождения геофизическими методами.

В итоге, оснащение геофизическими приборами опорной сети скважин месторождений предоставляет принципиально новые возможности информационного обеспечения разработки, т. к. позволяет организовать площадную систему прямых измерений параметров работы продуктивных пластов в действующих скважинах и, помимо оптимизации режимов эксплуатации отдельных скважин, появляется возможность создания постоянно обновляющихся баз данных для выполнения мониторинга разработки месторождений.

Калькулятор расчета монолитного плитного фундамента тут obystroy.com Как снять комнату в коммунальной квартире здесь Дренажная система водоотвода вокруг фундамента - stroidom-shop.ru

oilloot.ru

Исследование скважин с УЭЦН.

Поиск Лекций

Существуют три вида исследований: лабораторные, геофизические и гидродинамические. Для определения фильтрационных характеристик пласта и скважин более представительными являются гидродинамические методы исследования. При этих методах исследования непосредственно используются результаты наблюдения жидкости и газа к забоям скважин в пластовых условиях. Эти методы позволяют исключить влияние изменения свойств пласта в призабойной зоне и непосредственно определить фильтрационные характеристики пласта.

Выделяют 2 вида гидродинамических исследований: при неустановившемся и установившемся режимах фильтрации. Исследования скважин при неустан режиме дают больше информ, чем исследования методом установ отборов. При обработке КВД получают среднее значение гидропроводности или проницаемости на различных расстояниях от скважины, определяют коэффициент пьезопроводности и приведенный радиус скважины, оценивают коэф дополнительных потерь давления (показатель скин-эффекта), определяют пластовое давление и приближенный коэффициент продуктивности скв.

При обработке данных исследования методом установившихся отборов определяют коэф продуктивности и пластовое давление. Оценивают приближенно Гидропроводность и проницаемость в призабойной зоне. При исследовании скважин, оборудованных УЭЦН, широко используются методы, применяемые при эксплуатации скважин штанговыми скважинными насосными установками. Это применение скважинных манометров для замера забойного давления или давления на приеме насоса, а также определение уровня жидкости в скважине с помощью эхолота или волномера. Помимо этого используют методы присущи лишь данному способу эксплуатации скв.

Невсегда в скважинах с УЭЦН моно спустить манометр, поэтому часто используют звукометрический метод, позволяющий с помощью волномера замерить динамический уровень (скорость отражения звука*время отражения). Затем рассчитывают Рзаб= ρН/10.

Наиболее точен метод непосредственного измерения давления на приеме насоса с помощью скважинного манометра, спускаемого в НКТ и устанавливаемого в специальное запорное устройство, называемое суфлером. Давление на приеме насоса можно определить расчетным путем по давлению на выкиде насоса, измеряемому манометром, спущенном в НКТ, и напору, развиваемому насосом при закрытой манифольдной задвижке, после чего насос некоторое время подает жидкость, сжимая ГЖС в НКТ. Затем подача насоса становится равной нулю, о чем можно судить по стабилизации давления на устье. При нулевом режиме работы насоса давление на выкиде складывается из давления, создаваемого насосом, и гидростатического давления столба жидкости в затрубном пространстве над насосом - давления на приеме. Наиболее простой и наименее точный метод: определение коэф продуктивности по показаниям давления на устье. Обычно целью подобных исследований является качественное выявление причины уменьшения дебита скв: ухудшение свойств призабойной зоны или износ насоса

2. Технологии предотвращения и борьбы с АСПО в системе сбора.

Борьба с АСПО предусматривает проведение работ по 2-м направлениям: предупреждение образования и удаление.

1. Предотвращение. В него входят след работы:

а) применение гладких покрытий труб (внутр. стеклование поверхности труб, покрытие полиамидным пластиком и др.)

б) химич методы - это применение смачивающих присадок (для образ-я отталкивающего слоя-пленки на пов-сти трубы, депрессаторов (снижают t кристаллиз.вещ-ва), диспергаторов (для замедления роста кристаллов парафина),модификаторов.

в) физические методы-вибрационные, воздействие магнетических или электрических полей, ультразвуковые.

2. Удаление.

а) Тепловые методы (промывка горячей нефтью или водой, пропаркой, индукционные подогреватели)

б) Механические методы- скребки, центраторы, очистные поршни

в) Химические методы – применение обычных растворителей.

3. Технология форсированных отборов из нефтяных пластов.

Технология заключается в поэтапном увеличе­нии дебитов добывающих скважин (уменьшении забойного дав­ления Р3). Физико-гидродинамическая сущность метода состоит в создании высоких градиентов давления путем уменьшения Р3. При этом в неоднородных сильно обводненных пластах вовлека­ются в разработку остаточные целики нефти, линзы, тупиковые и застойные зоны, малопроницаемые пропластки и др.

Применяется на поздней стадии разработки, когда обводненность достигает более 75%. При этом текущая добыча и нефтеотдача возрастают вследствие увеличения градиентов давления и скорости фильтрации, обусловливающего вовлечение в разработку участков пласта и пропластков, не охваченных заводнением, а также отрыв пленочной нефти с поверхности породы. Форсированный отбор — наиболее освоенный метод повышения нефтеотдачи.

Практикой отработаны основные подходы к успешному внед­рению метода. Приступать к форсированному отбору следует постепенно, увеличивая дебит отдельных скважин на 30—50%, а затем - в 2-4 раза. Предельное значение увеличения отбора регламентируется возможностями используемого способа эк­сплуатации скважин. Для осуществления форсированного отбо­ра необходимы насосы высокой подачи или использование газ­лифта.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 21

1. Способы борьбы с вредным влиянием газа на работу УЭЦН.

2. Виды коррозии в системе сбора скважинной продукции.

3. Сущность потокоотклоняющих технологий (применение ВУС, ГОС и ОС).

Рекомендуемые страницы:

poisk-ru.ru

Исследование скважин, оборудованных установками центробежных электронасосов

Для построения индикаторной линии необходимо иметь дебит Q, пластовое pпл и заборное pз давления. Дебит и пластовое давление измеряют, как и при рассмотренных выше способах эксплуатации.

Заборное давление рассчитывают по давлению на приеме насоса pпр или по определенному с помощью эхолота уровню жидкости в затрубном пространстве.

Для непосредственного измерения pпр в НКТ несколько выше ЭЦН предварительно устанавливают специальное запорное приспособление (устройство) с уплотнительным седлом, называемое суфлером. Скважинный манометр оборудуют специальным наконечником. При посадке через НКТ манометра в седло заглушка суфлера сдвигается и открывает отверстия, связывающие манометр с затрубным пространством скважины.

Менее точно давление pпр можно рассчитать по давлению на выкиде насоса pвык, измеряемому скважинным манометром, спущенным в НКТ, и паспортному напору Но, развиваемому насосом при закрытой выкидной (манифольдной) задвижке.

Наиболее простой и наименее точный метод определения коэффициента продуктивности основан на измерениях давления на устье при двух режимах работы (подача насоса Q/, Q//). Режимы работы изменяют дросселированием потока на устье (прикрытием задвижки). На каждом режиме после его стабилизации закрывают манифольдную задвижку и измеряют давление на устье (p2/, p2//). Тогда коэффициент продуктивности

К0 = (Q/ - Q//) / (p2// - p2/). (1)

Этот метод может применяться для качественного выявления причин снижения дебита - ухудшения свойств призабойной зоны, износа насоса. Если дебит снизился при снижении динамического уровня, то образовалась забойная трубка или ухудшились свойства призабойной зоны. При отсутствии понижения динамического уровня причиной снижения дебита явился газ, поступающий в значительном количкстве в насос. При этом обычно поступается давление в затрубном пространстве или возрастает подача после остановки.

Кривую восстановления забойного давления можно снять при спуске манометра в суфлер. При этом необходимо быть уверенным в герметичности обратного клапана и посадки манометра в суфлере.

studbooks.net


Смотрите также