Изоляция для труб из ппм и ппу в чем разница


Сравнительный анализ ППУ и ППМ изоляции

Эффективная защита труб от негативных факторов окружающей среды — задача достаточно актуальная. С одной стороны, на данном рынке существует множество конкурирующих между собой технологий, большая часть из которых показывает незавидную эффективность (если говорить об их массовом применении). Но и большинство традиционных материалов являются морально устаревшими и уже не соответствуют тем требованиям, которые предъявляют в наши дни к качеству.

Между тем, Российская промышленность уже давно освоила производство современных, эффективных и доступных материалов, в числе коих доминируют ППУ (пенополиуретан) и ППМ (пенополимерминерал).

Пенополиуретан или ППУ является неплавкой термореактивной пластмассой, имеющей ярко выраженную ячеистую структуру и уникальные физико-химическими свойства, благодаря чему он обладает высочайшими эксплуатационными характеристиками. Попросту говоря, это, по сути, вспененный пластик, который не подвергается гниению и разложению и подходит для использования в качестве утеплителя. Структура его такова, что всего лишь 3% объёма составляет твёрдый материал, который образует каркас. Всё остальное — это поры, которые заполнены фторхлорметаном, представляющим собой газ с низким коэффициентом теплопроводности.

Система ППУ является двухкомпонентной, и собственно сам вспененный пенополиуретан образуется в процессе реакции поликонденсации изоционатов с полиолами — после смешивания двух жидких частей: компонента «А» — «полиол», который успешно изготавливается многими отечественными предприятиями, и компонента «Б» — «полиизоцианат», который увы в России не производится (из-за запретов на законодательном уровне), и экспортируется к нам исключительно из-за границы (преимущественно из Европы, Японии и Южной Кореи), что делает его цену крайне нестабильной из-за постоянно плавающего курса рубля.

Этот материал пытались получить в тридцатые годы прошлого века в Соединенных Штатах Америки. Тем не менее впервые пенополиуретан появился в Германии в 1937 году. Он был синтезирован известным немецким химиком и промышленником Отто Байером, который и начал его производить впервые в промышленных масштабах. ППУ быстро получил распространение в США, Канаде и западноевропейских странах в качестве теплоизоляции, используемой в строительной отрасли. В России этот материал был не так распространён и до недавнего времени применялся лишь в ВПК, а также для решения каких-либо узких задач, к примеру, для теплоизоляции холодильных камер. Только последние пару десятков лет ППУ занял своё место среди теплоизолирующих материалов.

Пенополимерминеральная изоляция — ППМ представляет собой тепловую изоляцию на основе вспененного полимера и минерального наполнителя. Основные компоненты ППМ изоляции — это, как правило, пенополиуретан (ППУ) и введённый в него для придания механической прочности минеральный наполнитель, в качестве которого как правило выступает песок, зола или другие материалы. Не так давно ППМ начал активно использоваться в качестве теплоизоляционного материала при изготовлении труб в ППМ изоляции. В целом изоляция ППМИ труб является крайне недорогим методом, о чем не скрывая заявляют производители стальных труб в ППМ изоляции. И с этим сложно поспорить. Стоимость изготовления и монтажа сравнительно мала, пенополимерминеральные трубы прокладывать значительно легче, чем, к примеру, ППУ-ПЭ. При изготовлении отсутствует необходимость монтажа системы ОДК, а затем контроля над ней. Не нужно обучать монтажников методикам дистанционной диагностики, оборудовать коверы системы ОДК, нет необходимости тестировать провода — смонтировал и забыл, о чем ещё можно мечтать эксплуатирующим теплотрассы муниципальным предприятиям!?

Получается, что цена ППМ изоляции действительно низкая, однако рассмотрим сравнение технических характеристик ППМ и ППУ подробнее:

Базу как ППМ изоляции, так и ППУ изоляции составляет пенополиуретан. В обоих случаях изоляция образует 3 слоя: внешний и внутренний корковые с большей плотностью, чем средний — теплоизоляционный. Разница — в количестве материала и разнице слоев по плотности. ППМи на 90% состоит из пены повышенной плотности и ориентировочно 10% — наполнителя (по объему).

Основные достоинства ППМ, — высокая механическая прочность, хорошие теплоизоляционные свойства (сопоставимый с ППУ коэффициент теплопроводности), паропроницаемость и низкое водопоглощение. ППМи, имея более высокую механическую прочность, в то же время менее стойка к повреждениям, чем ППУ в полиэтиленовой (ПЭ) оболочке, при этом делается вывод об одинаковой защищенности обоих типов изоляции от повреждений. И как подтверждение этого в технических условиях изготовителей требования к осторожному обращению с трубами ППМ аналогичны требованиям для труб ППУ.

Вопреки всей своей схожести, они обладают различными физико-химическими свойствами, исходя из этого вопрос оптимального выбора не так прост, как может показаться.

Одной из основных характеристик сравниваемых типов теплоизоляций является — Теплопроводность. Единица измерения: Вт/мС (при температуре 50°C).

ППУ — изоляция чуть лучше препятствует потере тепла (ее показатель — 0,033Вт/мК против 0,047Вт/мК у ППМ). В случае ППМи для получения одинаковых тепловых потерь необходимо пропорционально увеличивать толщину изоляции. Тем самым ППУ имеет небольшое преимущество при прокладке труб в коммунальной сфере, где подобные расходы напрямую сказываются на экономической эффективности, однако в данном преимуществе есть «но», для предварительно изолированных ППУ-труб в заводской полиэтиленовой оболочке требуется качественная изоляция стыков с использованием термоусаживающихся муфт или лент. Если этим пренебречь, то ППУ-изоляция будет набирать влагу, и все теплозащитные свойства будут резко снижаться, а также начнутся коррозийные процессы на теле трубы, которые протекают очень стремительно при высоких температурах теплоносителя.

Следующим параметром является плотность. Показатель, от которого зависит вес готовых изделий, удобство монтажа и требования к среде, в которой будет находиться труба.

Для этого обратимся к результатам лабораторных испытаний, представленным компанией BASF на ежегодной международной конференции «Тепло России» в 2010 году в Санкт-Петербурге.

  • ППУ, заливочная плотность не менее 60 кг/м3.
  • ППМ, заливочная плотность 200-260 кг/м3, доля песка по массе 41,3%.

При такой плотности прочность ППМ при сжатии практически втрое превосходит ППУ, что гарантирует существенное снижение затрат на эксплуатацию и установку.

Термостойкость, здесь можно констатировать примерный паритет обоих материалов, сохраняющих гарантированную работоспособность трубы при температурах до 150°.

Следующей довольно важной характеристикой является — водопоглощение.

Здесь у ППМ крайне важное преимущество это его паропроницаемость и низкое водопоглощение, отмечается: «Водопоглощение при одних и тех же условиях у ППМи в 20 раз меньше, чем у ППУ. При таких значениях наличие гидроизоляционного слоя не требуется — вся конструкция целиком защищает материал изоляции и наружную поверхность трубы от проникновения влаги». Низкое водопоглощение нормируется в большинстве ТУ на ППМи на уровне не более 1,5% по массе или 0,5% по объему. Испытания на водопоглощение производились путем погружения образцов в воду на 24 часа при 20°c. Паропроницаемость этой изоляции связывается с возможностью высыхания увлажненной ППМ изоляции. Вопрос о высыхании в свое время был исследован в работе Умеркина Г.Х. «Исследования процессов высыхания пено-полимерминеральной теплогидроизоляции». ППУ — изоляция при условии качественной изоляции стыков так же практически не впитывает воду и является замечательной защитой как от атмосферной, так и от грунтовой влаги.

Предел прочности при сжатии и изгибе, здесь ППМи оказывается более предпочтительной (0,4), чем пенополиуретан (1,2-1,7), но с рядом существенных оговорок. Во-первых, оба значения полностью укладываются в нормы, прописанные в СНиПе и ГОСТе. Во-вторых, следует учитывать тот факт, что трубы относятся к той категории технических изделий, которые практически не демонтируются. В-третьих, даже 0,4 МПа на практике оказываются вполне достаточными для эффективной работы.

Толщина изоляционного слоя при Ø 273 мм у ППМи-43 мм., а ППУ-57 мм.

Кроме всего прочего стоит обратить внимание на то, как выглядит изоляция ППМ стыков, ведь как утверждают изготовители труб в ППМи — это одно из их главных преимуществ перед ППУ-трубопроводами в заводской оболочке. Подумать только, стоимость заделки стыка в 3 раза дешевле стыка ППУ-трубы. Вряд ли можно придумать что-то более дешевое.

В подведение итога хотелось бы сказать, действительно выбор типа изоляции между пенополиуретановой и пенополимерминеральной — вопрос сложный, и неоднозначный оба типа изоляции (с наружным гидроизоляционным слоем и безоболочная) рекомендованы СНиП 41-02-2003 «Тепловые сети».

Но тем не менее, при выборе того или иного типа изоляции теплоснабжающая компания, исходя из целей обеспечения надежности и экономичности теплоснабжения, должна учитывать такие критерии, как теплоизоляционные показатели и их изменение в процессе эксплуатации, появление повреждений трубопровода и изоляции и их своевременное обнаружение и устранение. Вышеприведенный анализ показывает, что трудно однозначно рассматривать ППМи либо ППУ как эффективную и перспективную технологию, которая может обеспечить реальное энергосбережение и надежность эксплуатации тепловых сетей, особенно в случае без канальной прокладки. На практике картина может существенно отличаться. Качество заводского изготовления теплопроводов как в ППУ, так и в ППМ изоляции может быть и хорошим, и плохим. То же относится и к качеству монтажа. Однако, трудоемкость и степень сложности монтажа разные. Имеет значение и необходимость или же её отсутствие, в системе ОДК. Возможно, с учетом данных обстоятельств, теплоснабжающие организации все чаще предпочитают ППМ изоляцию, но, не по всем диаметрам. По нашим наблюдениям в теплоснабжающих организациях на сегодня сложилась следующая практика: магистральные сети укладываются в ППУ изоляции, а распределительные сети — в ППМи.

Расчет толщины изоляции для труб »Мир трубопроводной инженерии

Когда жидкость проходит через трубу, она теряет тепло в окружающую атмосферу, если ее температура выше температуры окружающего воздуха. Если температура трубы ниже температуры окружающего воздуха, она получает тепло от нее. Поскольку трубы обычно изготавливаются из таких металлов, как сталь, медь и т. Д., Которые очень хорошо проводят тепло, потери тепла будут значительными и очень дорогостоящими. Поэтому важно обеспечить покрытие из материала, который очень плохо проводит тепло, например из минеральной ваты, конопли и т. Д.

Суммарный теплообмен (Q) от трубы через такой изоляционный материал зависит от следующих факторов:

  1. N : Длина трубы.
  2. Tp : рабочая температура жидкости внутри трубы.
  3. Ti : Максимально допустимая температура на внешней поверхности изоляции. Обычно 50 ° C.
  4. Rp : Радиус трубы.
  5. Ri : Радиус изоляции.
  6. k : Теплопроводность изоляционного материала.

Формула стационарной теплопередачи через изоляционный материал, обернутый вокруг трубы, выглядит следующим образом:

Приведенное выше уравнение получено из уравнения Фурье для теплопроводности, для стационарной теплопередачи при радиальной теплопроводности через полый цилиндр.

Пример расчета

Предположим, у нас есть труба диаметром 12 дюймов, по которой протекает горячее масло с температурой 200 ° C. Максимально допустимая температура изоляции на внешней стене составляет 50 ° C.Допустимые потери тепла на метр трубы - 80 Вт / м. Используемая изоляция - это стеклянная минеральная вата с теплопроводностью для этого диапазона температур 0,035 Вт / мК. Теперь нам нужно определить необходимую толщину изоляции.

Теплопроводность выражается в ваттах на метр на градус Кельвина (Вт / мК), что по сути совпадает с ваттами на метр на градус Цельсия (Вт / мКл) (при переводе из Кельвина в градус множителя нет. то же, что и постепенное изменение в градусах Цельсия.)

В приведенной выше формуле Q - общая потеря тепла, а N - длина трубы. Таким образом, Q / N становится допустимой потерей тепла на метр трубы, которая составляет 80 Вт / м.

Q / N = 80 Вт / м.

Диаметр трубы 12 дюймов, следовательно радиус 6 дюймов.

Радиус в метрах: (6 ″ X 25,4) / 1000 = 0,1524 метра.

Итак:

80 = 2π × 0,035 × (200-50) ÷ ln (Ri / 0,1524)

ln (Ri / 0,1524) = 2π × 0,035 × (200-50) / 80 = 0,4123

Следовательно, Ri = Rp × e 0.4123

Ri = 0,1524 × 1,5103 = 0,2302 м

Следовательно, толщина изоляции = Ri - Rp = 0,2302 - 0,1524 = 0,0777

Толщина изоляции = 77,7 мм

Необходимо учитывать дополнительный запас по толщине изоляции, поскольку иногда теплопередача через изоляцию может быть выше, чем конвективная теплопередача за счет воздуха на внешней стене изоляции. В этом случае температура внешней поверхности изоляции может увеличиться более чем до 50 ° C. Цель этой примерной задачи - продемонстрировать расчеты радиальной теплопроводности. Практические расчеты толщины изоляции также требуют учета конвективной теплопередачи на внешней стороне изоляционной стены.

Нравится:

Нравится Загрузка ...

.

частей на миллион - ppm

частей на миллион - ppm - обычно используется в качестве безразмерной меры малых уровней (концентраций) загрязняющих веществ в воздухе, воде, биологических жидкостях и т. Д.

частей на миллион - это молярная масса, объем или массовое соотношение между загрязняющим компонентом и раствором. частей на миллион определяется как

частей на миллион = 1000000 циклов / с

= 10 6 циклов / с (1)

, где

с = молярная масса, объем или масса компонента (моль, м 3 , фут 3 , кг, фунт м )

s = молярная масса, объем или масса раствора (моль, м 3 , фут 3 , кг, фунт м )

В метрической системе ppm для массы может быть выражено через миллиграммов по сравнению с кг, где

  • 1 мг / кг = 1 часть на миллион

ppm также может быть выражено как

  • 1 ppm = 10 -6 = 0.0001% = 0,001 ‰
  • 1000 ppm = 0,1 %
  • 10 000 ppm = 1%

В качестве альтернативы - единицы измерения массы для измерения очень малых уровней концентрации:

  • ppb - частей на миллиард (1/1000000000 или 10 -9 )
  • ppt - частей на триллион (1/1000000000000 или 10 -12 )
  • ppq - частей на квадриллион (1/1000000000000000 или 10 -15 )

В качестве альтернативы единицей измерения массы для измерения более высоких уровней концентрации является массовых процентов , что может быть выражено как

массовых процентов = 100 м c / м с (2 )

ppm vs.Масса на единицу объема

Концентрация компонента может быть измерена как масса на единицу объема - например, мг / литр, мг / см 3 и т. Д.

Вес вещества, добавляемого к единице объема воды для получения единицы частей на миллион (ppm)

1 ppm

= 2,72 фунта на акр-фут

= 1233 грамма на акр-фут

= 1,233 кг на акр-фут

= 0.0283 грамма на кубический фут

= 0,0000624 фунта на кубический фут

= 0,0038 грамма на галлон США

= 0,058419 гран на галлон США

= 0,07016 грамма = 0,07016 грамма на галлон США

= 0,07016 грамма 1 миллиграмм на литр (мг / л)

= 1 микролитр (мкл) на литр

= 0,001 грамм на литр

= 8.345 фунтов на миллион галлонов воды

Пример - Объемная концентрация диоксида углерода в воздухе

Концентрация диоксида углерода в воздухе составляет прибл. 400 страниц на миллион . Объем углекислого газа в одном 1 м 3 воздуха можно рассчитать, изменив (1) на

c = ppm с / 10 6

= (400 частей на миллион) (1 м 3 ) /10 6

= 0.0004 м 3 / м 3

Процент по объему

Процент по объему можно выразить как объем на единицу объема:

процент по объему = 100 v c / (v c + v с ) (3)

где

v c = компонент объема

v с = объем растворителя

Молярность

Молярность - это количество молей растворенного вещества ( интересующее вещество - загрязнение и т. д.) растворенного в одном литре (объеме) раствора.

Моляльность

Моляльность - это число молей растворенного вещества, деленное на килограммы растворителя.

.

частей на миллион

частей на миллион

Это сокращение от «частей на миллион», которое также может быть выражено в миллиграммах на литр (мг / л). Это измерение - масса химического вещества. или загрязнять на единицу объема воды. Просмотр ppm или мг / л в лабораторном отчете означает то же самое.

Одна часть на миллион эквивалентна абсолютному дробному количеству, умноженному на единицу. миллион. Лучше думать о промилле - это представить себе, как капают четыре капли чернила в бочке с водой емкостью 55 галлонов и тщательно перемешайте.Эта процедура дала бы концентрацию чернил 1 ppm. Некоторые другие аналогии, которые могут поможет вам визуализировать масштаб, связанный с ppm. Одна часть на миллион соответствует:

  • один дюйм за 16 миль,
  • одну секунду за 11,5 дней,
  • одну минуту за два года.

Еще меньшее измерение концентрации - части на миллиард (ppb). Один ppb - это одна часть на 1 миллиард. Поскольку ppb - это гораздо более низкая концентрация, некоторые аналогии:

  • один лист в рулоне туалетной бумаги, тянущийся от Нью-Йорка до Лондона,
  • в секунду за почти 32 года, или
  • одна щепотка соли на 10 тонн чипсов.
.

Трубы Общие - Номинальный размер трубы (NPS) и график (SCH)

Что такое номинальный размер трубы?

Номинальный размер трубы (NPS) - это североамериканский набор стандартных размеров труб, используемых для высоких или низких давлений и температур. Название NPS основано на более ранней системе «Размер железной трубы» (IPS).

Эта система IPS была создана для обозначения размера трубы. Размер представляет собой приблизительный внутренний диаметр трубы в дюймах. Труба IPS 6 дюймов - это труба, внутренний диаметр которой составляет приблизительно 6 дюймов.Пользователи начали называть эту трубу 2-дюймовой, 4-дюймовой, 6-дюймовой трубой и так далее. Для начала каждый размер трубы был изготовлен так, чтобы иметь одну толщину, которая позже была названа стандартной (STD) или стандартной массой (STD.WT.). Внешний диаметр трубы был стандартизирован.

В соответствии с промышленными требованиями, предъявляемыми к жидкостям под более высоким давлением, трубы производились с более толстыми стенками, которые стали известны как сверхпрочные (XS) или сверхтяжелые (XH). Требования к более высокому давлению увеличились еще больше с трубами с более толстыми стенками.Соответственно, трубы изготавливались с двойными сверхпрочными (XXS) или двойными сверхтяжелыми (XXH) стенками, при этом стандартизованные наружные диаметры не изменились. Обратите внимание, что на этом веб-сайте используются только термины XS и XXS .

Спецификация трубопроводов

Итак, во времена IPS использовались только три толщины стены. В марте 1927 года Американская ассоциация стандартов провела обследование отрасли и создала систему, определяющую толщину стенок на основе меньших шагов между размерами. Обозначение, известное как номинальный размер трубы, заменило размер железной трубы, а термин «график» ( SCH ) был изобретен для определения номинальной толщины стенки трубы.Добавляя номера спецификации к стандартам IPS, сегодня мы знаем диапазон толщины стенок, а именно:

SCH 5, 5S, 10, 10S, 20, 30, 40, 40S, 60, 80, 80S, 100, 120, 140, 160, STD, XS и XXS.

Номинальный размер трубы ( NPS ) - это безразмерное обозначение размера трубы. Он указывает на стандартный размер трубы, если за ним следует номер обозначения конкретного размера без символа дюйма. Например, NPS 6 обозначает трубу, внешний диаметр которой составляет 168,3 мм.

NPS очень слабо связано с внутренним диаметром в дюймах, а трубы NPS 12 и меньшие имеют внешний диаметр больше, чем обозначение размера.Для NPS 14 и больше NPS равен 14 дюймам.

Для данного NPS внешний диаметр остается постоянным, а толщина стенки увеличивается с увеличением номера спецификации. Внутренний диаметр будет зависеть от толщины стенки трубы, указанной в спецификации.

Резюме:
Размер трубы указывается двумя безразмерными числами,

  • номинальный размер трубы (NPS)
  • номер расписания (SCH)

и соотношение между этими числами определяют внутренний диаметр трубы.

Размеры труб из нержавеющей стали

определены стандартом ASME B36.19, охватывающим внешний диаметр и толщину стенки по спецификации. Обратите внимание, что все толщины стенок нержавеющей стали по ASME B36.19 имеют суффикс "S". Размеры без суффикса «S» соответствуют стандарту ASME B36.10, который предназначен для труб из углеродистой стали.

Международная организация по стандартизации (ISO) также использует систему с безразмерным обозначением.
Диаметр номинальный ( DN ) используется в метрической системе единиц. Он указывает на стандартный размер трубы, за которым следует номер обозначения конкретного размера без символа миллиметра.Например, DN 80 является эквивалентом NPS 3. Ниже приведена таблица с эквивалентами для размеров труб NPS и DN.

NPS 1/2 3/4 1 2 3 4
DN 15 20 25 32 40 50 65 80 90 100

Примечание. Для NPS ≥ 4 соответствующий DN = 25, умноженный на номер NPS.

Теперь вы знаете, что такое "ein zweihunderter Rohr" ?. Немцы подразумевают под этим трубу NPS 8 или DN 200. В данном случае голландцы говорят о «8 duimer». Мне действительно любопытно, как люди в других странах указывают на трубку.

Примеры действительного наружного диаметра. и И.Д.

Фактический наружный диаметр

  • Фактический наружный диаметр NPS 1 = 1,5 / 16 дюймов (33,4 мм)
  • Фактический наружный диаметр NPS 2 = 2,3 / 8 дюйма (60,3 мм)
  • Фактический наружный диаметр NPS 3 = 3½ дюйма (88,9 мм)
  • NPS 4 фактический O.D. = 4½ дюйма (114,3 мм)
  • Фактический наружный диаметр NPS 12 = 12¾ "(323,9 мм)
  • Фактический наружный диаметр NPS 14 = 14 дюймов (355,6 мм)

Фактический внутренний диаметр 1 дюймовой трубы.

  • NPS 1-SCH 40 = Внешний диаметр 33,4 мм - WT. 3,38 мм - I.D. 26,64 мм
  • NPS 1-SCH 80 = Внешний диаметр 33,4 мм - WT. 4,55 мм - I.D. 24,30 мм
  • NPS 1-SCH 160 = Внешний диаметр 33,4 мм - WT. 6,35 мм - I.D. 20,70 мм

Как указано выше, никакой внутренний диаметр не соответствует истине 1 дюйм (25,4 мм).
Внутренний диаметр определяется толщиной стенки ( WT ).

Факты, которые вам необходимо знать!

Schedule 40 и 80 приближаются к STD и XS и во многих случаях одинаковы.
Для размеров от NPS 12 и выше толщина стенки между моделями 40 и STD отличается, от NPS 10 и выше толщина стенок между сортами 80 и XS отличается.

Список 10, 40 и 80 во многих случаях аналогичен списку 10S, 40S и 80S.
Но будьте осторожны, от NPS 12 до NPS 22 толщина стенки в некоторых случаях отличается.В этом диапазоне трубы с индексом "S" имеют более тонкую толщину стенки.

ASME B36.19 не распространяется на все размеры труб. Таким образом, требования к размерам ASME B36.10 применяются к трубам из нержавеющей стали размеров и графиков, не охватываемых ASME B36.19.

Замечание (я) автора ...

История номинального размера трубы 9 марта 2006 г.
  • Персоналу PM Engineer (PME) (один из дочерних журналов SUPPLY HOUSE TIMES) был задан вопрос о том, как получился номинальный размер трубы.Вот ответ, предоставленный редакционным директором PME Юлиусом Балланко.
  • Человеком, непосредственно ответственным за номинальный размер трубы, был джентльмен по имени Роберт Бриггс. Бриггс был суперинтендантом завода Pascal Iron Works в Филадельфии. В 1862 году он написал набор спецификаций труб для железных труб и разослал их всем заводам в этом районе.
  • Поймите, что в 1862 году Соединенные Штаты были вовлечены в Гражданскую войну. Каждый трубный завод производил свои трубы и фитинги по своим техническим требованиям.Бриггс попытался стандартизировать размеры, что также помогло военным усилиям. Труба и фитинги будут взаимозаменяемыми между мельницами. В 1862 году это было довольно необычно.
  • Стандарты труб стали известны как «Стандарты Бриггса». В конечном итоге они стали американскими стандартами и, наконец, стандартами, используемыми для современных труб.
  • В текущем стандарте стальных труб ASTM A53 в основном используется стандарт Бриггса для труб размером от 1/2 до 4 дюймов. Вы заметите, что после 4 дюймов труба начинает приближаться к фактическому размеру. используется для идентификации трубы.
  • Итак, вы, наверное, спросите, откуда взялись размеры? Ну, это были размеры штампов, используемых в Pascal Iron Works. Бриггс заставил всех подстроиться под себя. Отсюда и название «именная» труба. размер возник, что означает «близко к» или «где-то рядом» с действительным измерением.

Я нашел историю номинального размера трубы в Supplyhouse Times

.

Смотрите также