Как перейти с металлической трубы на пластиковую без резьбы и сварки


Как соединить пластиковую трубу с металлической

Автор Монтажник На чтение 12 мин. Просмотров 13.1k. Обновлено

Полимерные трубы повсеместно вытесняет изделия из металлов во всех сферах, особенно это заметно в строительной отрасли. При этом перед монтажниками нередко встает задача, как соединить пластиковую трубу с металлической на участках, где полная замена трубопровода невозможна по разным причинам.

Соединение полимерных и металлических труб актуально как для специалистов строительной отрасли, особенно сантехников, так и для рядовых потребителей, проводящих различные виды ремонтных работ в своих квартирах или загородных домах. Чтобы получить герметичный и надежный стык, следует изучить разные способы соединения труб из разнородных материалов, знать применяемые для проведения работ комплектующие и необходимый для этого инструмент.

Рис. 1 Примеры того, как соединить пластиковую трубу с металлической

Когда производят соединение пластиковых труб с металлическими

Сопряжение разнородных труб в строительной и бытовой сфере производят:

  • При врезании в стальной трубопровод, транспортирующий воду, газ, часто используют полимерное ответвление, отходящее от тройника.
  • При прокладке подземных газовых трубопроводов из полиэтилена при выходе наверх его стыкуют со стальным отводом для входа в здания.
  • При замене поврежденных участков стояка канализации или подземной канализационной линии чугунные секции меняют на пластмассовые, при этом их соединяют по разным технологиям.
  • При замене стальных фрагментов водопровода ну улице и внутри помещений на полимерные.
  • В особых случаях, когда один отрезок трубопровода располагается в зоне повышенных температур или существенных нагрузок, его делают из термостойкого и прочного железосодержащего сплава, а далее соединяют с линией из полимеров.

Рис. 2 Трубы из металлов (сталь, оцинковка, нержавейка, медь) для эксплуатации в системах водоподачи, отопления и канализации

Виды соединяемых труб

Для того, чтобы провести работы по состыковке качественно без возможного разрушения труб из разнообразных материалов, полезно знать их разновидности и физические свойства.

Металлические

Все металлы отличаются отличными прочностными характеристиками, высокой стоимостью, также сталь и чугун подвержены коррозии. Металлические трубы изготавливают из следующих сплавов:

Сталь. Во всех коммуникациях прокладывается по поверхности земли, обладает наивысшей прочностью и твердостью среди всех металлов и полимеров. Часто встречается ее оцинкованные разновидности, обладающие повышенной коррозионной стойкостью. Стали гибки и пластичны, на них относительно несложно нанести резьбу, однако из-за твердости и прочности они трудно поддаются обработке.

Чугун. Довольно популярный материал, трубные чугунные изделия большого диаметра изготавливают в настоящее время, отличается более высокой коррозионной стойкостью, чем сталь, однако имеет практически нулевую пластичность и раскалывается при деформации.

Нержавейка. Имеет аналогичные со сталью физические характеристики, в отличие от нее нержавейка обладает повышенной коррозионной стойкостью, но из-за значительной стоимости практически не встречается в бытовых и коммунальных линиях.

Медь. Дорогие трубопроводы из меди обладают пластичностью, гибкостью, соединяются между собой пайкой, их нередко используют для прокладки теплосетей индивидуальных домов в зоне отопительного котла.

Рис. 3 Полипропиленовые переходные фитинги

Полимерные

Основное преимущество труб из полимеров – инертность к большинству агрессивных химических веществ, коррозионная стойкость, простота обработки и невысокая стоимость. В строительной и бытовой сфере применяют полимерные трубы из следующих пластмасс:

Полиэтилен низкого давления ПНД. ПНД – основной компонент изготовления магистралей, прокладываемых под землей для транспортировки воды в коммунальные и индивидуальные дома и природного газа. Отличается эластичностью и гибкостью, изделия малого диаметра соединяют друг с другом посредством компрессионных фитингов, электросварных (с закладным нагревательным элементом) или сваркой встык. Так как трубы ПНД становятся эластичными при температурах выше + 60 °С, их используют только для транспортировки холодной воды.

Полипропилен ПП. Основной вид материала для монтажа внутридомовых магистралей холодной и горячей воды, отличается неплохой прочностью, трубопровод прокладывают методом спайки отдельных участков. Стенки ПП-труб довольно толстые и прочные, поэтому трубопровод обладает не слишком хорошей гибкостью. Один из недостатков полипропилена – высокий коэффициент температурного расширения, поэтому для отопления используют изделия, имеющие внутренний слой из стекловолокна или алюминиевой фольги, придающий им повышенную прочность и снижающий температурную зависимость. Соединение полипропилена проводят по технологии пайки, используя для этого специальный паяльный утюг.

Поливинилхлорид ПВХ. Жесткий и хрупкий материал, из которого изготавливают канализационные трубы большого диаметра, трубопровод монтируют раструбным методом. ПВХ трубы имеют довольно тонкие стенки, поэтому трубопровод прокладывают на поверхности земли с незначительными нагрузками. Для подземной прокладки выпускают многослойные ПВХ трубы, которые имеют легкий вес и более высокие характеристики.

Рис. 4 Переходники с полиэтилена на металл – принцип работы и внешний вид

Непластифицированный поливинилхлорид НПВХ. Прочный, жесткий и хрупкий материал, обладающий сходными с поливинилхлоридом характеристиками, но более устойчивый к нагрузкам. Наружные НПВХ трубы для канализации выпускают рыжего цвета, при прокладке в траншеях под землей они выдерживают нагрузки земляного пласта высотой до 6 м.

Сшитый полиэтилен PEX. Трубопровод из сшитого полиэтилена обладает хорошими параметрами прочности, термостойкости и гибкости, из него прокладывают контуры теплых полов, которые затем заливают стяжкой. Трубы подключает коллектору, имеющему металлические патрубки, их концы надевают на штуцеры и зажимают компрессионными фитингами.

Металлопластик PE-AL-PE. Для укрепления оболочки и снижения температурного расширения пластиковые трубы упрочняют внутренними алюминиевыми оболочками. Встречаются следующие разновидности полимерных труб с фольгированным слоем, маркировка которых наносится на их поверхность:

  • PE-R – указывает, что материалом изготовления изделия является полиэтилен;
  • PP-R – означает, что стенка изготовлена из полипропилена;
  • PE-X – основной материал изготовления стенки – сшитый полиэтилен;
  • PE-RT – стенка сделана из термостойкого полиэтилена.

Рис. 5 Канализационные НПВХ и ПВХ трубы

Трубопроводные магистрали, применяемые в системе отопления, водопровода, газоснабжения, находятся под довольно высоким давлением, поэтому к стыкам предъявляются повышенные требования по прочности и герметичности.

Так как металл и пластик являются разнородными материалами, не может быть речи об их совместной сварке, спайке, склеивании при монтаже, эффективны только механические варианты состыковки.

При помощи резьбовых фитингов

Резьбовые соединения – одни из самых известных и популярных видов сращивания различных деталей, имеющих цилиндрическую форму. Принцип резьбового крепления состоит в нарезании на стенках стальных труб резьбы внутри или снаружи, а на ответную деталь из пластика крепится соответствующий резьбовой фитинг.

Типовой переходник с металлической трубы на пластиковую состоит из двух частей – один участок подсоединяется к пластмассовой детали, а второй патрубок с резьбой внутри или снаружи, фитингом типа американка, прикручивается к стальному элементу.

Рис. 6 Сопряжение фитингов с изделиями из ПЭ (НСПС), ПП (пайка), PEX (напрессовка) и PE-AL-PE (опрессовка)

В зависимости от материала труб используются следующие способы монтажа на их торцах резьбовых фитингов:

Полипропиленовые ПП. Переход с железной трубы на полипропилен состоит из металлической части с резьбой и короткого ПП патрубка, имеющего внутренний посадочный размер, равный внешнему трубной оболочки. При сборке переход со стальной трубы на полипропилен и внешняя стенка ПП-трубы нагреваются специальным паяльником и соединяются вместе на некоторое время до спайки полипропилена. При данном способе стыкования ответная деталь из металла должна иметь резьбовую нарезку.

Полипропиленовые трубы можно соединить с металлической, имеющей наружную резьбу чуть большего диаметра, чем внутренний полипропиленовый, более простым способом. Для этого паяльным утюгом разогревают внутреннюю полость ПП-трубы и быстро одевают ее на стальной резьбовой отвод, обжимая руками, после остывания полипропиленовую деталь можно вкручивать и выкручивать по своему усмотрению.

Полиэтиленовые ПЭ. Самое распространенное соединение водопроводных ПЭ труб с металлическими  производится при помощи компрессионных фитингов, которые выполнены из пластика (полипропилена или полиэтилена). Принцип компрессионного фитинга заключается в обжиме муфты специальной цанговой шайбы, которая находится внутри фитинга. Эта цанга имеет обратные пазы, которые врезаются в тело трубы и не дают стыку разъединяться при высоких давлениях.  Данным методом соединяются водопроводные трубы диаметром от 20 до 110 мм, а также скважинные адаптеры к водопроводной магистрали.

В промышленной сфере для сопряжения ПЭ-труб со стальными применяется неразъемное соединение полиэтилен-сталь НСПС, представляющее собой терморезисторную сварку под давлением двух коротких патрубков из указанных материалов.

Рис. 7 Принцип сопряжения компрессионной муфтой

Сшитый полиэтилен, металлопласт. Существует несколько технологий крепления переходных фитингов на трубы из сшитого полиэтилена и металлопласта:
  • Компрессионная муфта. На пластиковую трубу одевается накидная гайка с внутренней резьбой, под которой находится зажимное кольцо с прорезью. Внутрь трубной оболочки вставляют переходную муфту с уплотнительными кольцами для обеспечения жесткости стенок. При прикручивании наружной резьбовой гайки к резьбе металлической трубы происходит прижимание ее стенок к внутреннему переходнику, что обеспечивает герметичность и одновременную стыковку.
  • Опрессовка. Переходной металлический фитинг с уплотнительными кольцами или ребрами в виде елки вставляют внутрь трубы, сверху на трубную оболочку одевают гильзу, которую затем сдавливают специальным инструментом, прижимая внутренний штуцер к стенкам трубы. Ответная металлическая деталь может иметь любую форму и наружную или внутреннюю резьбу, американку – ассортимент опрессуемых фитингов весьма широк.
  • Напрессовка. Переходной фитинг вставляют внутрь трубы, сверху на ее оболочку одевают гильзу. Далее с помощью специального инструмента гильзу сдвигают вперед, сдавливая тем самым трубную оболочку снаружи и прижимая ее к стенкам внутреннего переходника, имеющего различные форму, тип и размер резьбы.

Рис. 7 Варианты соединения труб с помощью специальных муфт

Рис. 8 Втулка полиэтиленовая и бурт из полипропилена в сборе для реализации флацевого соединения

Рассмотренные выше соединения основывались на том, что к пластиковой трубе припаивался или крепился каким-либо способом фитинг, имеющий резьбу для соединения с металлической деталью, имеющей ответную резьбовую часть. Данная технология является общепринятой и обеспечивает высокое качество, герметичность, и прочность соединения, ее единственный и основной недостаток – невозможность стыковки с трубами, имеющими гладкую поверхность. Следует отметить, что непосредственно соединить пластиковую трубу с железной без резьбы при прокладке любого вида инженерных коммуникаций невозможно, для их сопряжения разработана технология с применением электросварных муфт и переходных элементов НСПС.

При прокладке трубопроводных магистралей большого диаметра промышленного назначения используется стыковка разнородных трубных участков с помощью фланцев, к примеру фланцевое соединение металлической трубы с полиэтиленовой или полипропиленовой. Для его реализации к стальным трубам приваривают фланцы, а к пластиковым специальные бурты. За бурт предварительно перед сваркой устанавливается ответный фланец. Стыкуется узел при помощи болтов, которыми стягиваются фланцы.

Рис. 9 Соединение с помощью хомутов – примеры

Соединение пластиковой трубы с металлической без резьбы можно провести следующими полукустарными методами, не гарантирующими приемлемое качество стыка:

При помощи хомутов. Метод довольно прост, пластиковая труба обычно из сшитого полиэтилена одевается на стальную и зажимается стальным хомутом, помещенным на ее наружную оболочку, при помощи прижимного винта. По технологии этот способ напоминает подсоединение труб из сшитого полиэтилена, используемых при укладке теплых полов, к коллектору, имеющему безрезьбовые входные металлические штуцеры.

Если стальная и полимерная труба имеют приблизительно равные диаметры, можно вставить внутрь полимерной стальную гильзу для увеличения прочности ее стенок и соединить обе трубы сверху стальным накладным хомутом, прижав его четырьмя винтами. Правда при данном методе соединения придется хорошо подумать о герметизации стыка.

Переходных муфт. Переходные муфты из достаточно прочных и эластичных обрезков полимерных труб можно использовать как кустарный способ стыковки двух элементов. Для этого в отрезок муфты, имеющий внутренний диаметр стыкуемых полимерной и металлической деталей, вставляются обе соединяемых элемента и прижимаются по краям накладными хомутами.

Рис. 10 Gebo – внешний вид и принцип работы

Фитинга Gebo. Одна из новейших разработок зарубежных специалистов – компрессионный фитинг Gebo, предназначенный для состыковки двух отрезков металлических труб одинакового диаметра, подходящего к внутреннему размеру Gebo. Отличительная особенность Gebo – наличие в конструкции компрессионной муфты уплотнительного резинового кольца, которое исключает протечки. Хотя данный фитинг по инструкции не может осуществлять сопряжение металла и пластика, теоретически жесткая ПП-труба с внутренней прослойкой из стекловолокна или алюминия может быть надежно и герметично состыкована с металлической при одинаковом размере их внешних диаметров.

Поэтому применение фитинга Gebo довольно грамотный ответ на вопрос, как соединить металлическую трубу с полипропиленовой, когда обе детали имеют гладкие стенки и одинаковые размеры в окружности.

Выше рассматривалась методика присоединения труб в магистралях водоснабжения и тепловых сетей, находящихся под давлением. В отличие от напорных коммуникаций, бытовая канализация работает в безнапорном режиме, то есть на стыки трубопровода не оказывается физическое воздействие от транспортируемого по нему рабочего тела. Поэтому основное требование к стыкам в канализационном трубопроводе – обеспечение герметичности.

Рис. 11 Примеры как соединить пластиковую трубу с металлической посредством манжет

Канализация обычно прокладывается трубами из чугуна и поливинилхлорида ПВХ, при необходимости их стыковки используют следующие варианты:

Присоединение посредством манжеты. Если в чугунной канализации имеется расширяющийся раструб на конце, в него вставляют ПВХ-трубу, герметизируя стык каучуковой манжетой. Аналогичным образом стыкуют чугун с ПВХ-трубами большего размера, просто вставляя их в последние и герметизируя щели уплотнительными кольцами.

Хомуты. Соединить канализационную пластиковую трубу с железной из чугуна можно посредством накладных хомутов подходящего размера, приобретенных в торговой сети, или сделанных самостоятельно.

Для изготовления хомутов своими руками вырезают лист из резины, оборачивают им место стыка двух труб и зажимают его хомутиками, вырезанными из полосок жести при помощи болтов с гайками. При отсутствии времени или желания можно просто обмотать место стыковки проволокой, плотно скрутив ее концы.

Переходники. Одна из методик, как соединить ПВХ трубу с металлической, является использование переходников в виде гофротруб с манжетами. Также для состыковки труб разных размеров выпускают пластмассовые фасонные изделия с переходом с большого на малый диаметр.

Соединительные муфты. Можно состыковать две трубы из чугуна и поливинилхлорида с помощью переходной муфты, вырезанный из отрезка жестяной или ПВХ-трубы. Ее одевают сверху на место стыкуемых элементов, а образовавшиеся щели запенивают монтажной пеной или забивают водонепроницаемыми эластичными прокладками.

Рис. 12 Сопряжение чугуна и ПВХ-труб переходниками

Правильное соединение металлической и пластиковой трубы достигается только при использовании резьбы на двух деталях. Безрезьбовое соединение металлических и пластиковых труб в бытовых условиях любыми способами относится к полукустарным методам и не обеспечивает условий герметичности и прочности соединений, необходимых при высоких давлениях в магистрали.

Процесс производства труб / Методы изготовления бесшовных и сварных труб

Перейти к содержанию
  • На главную
  • ТрубопроводыРазвернуть / Свернуть
    • ТрубопроводРазвернуть / Свернуть
      • Направляющая по трубам
      • Размеры и спецификации труб
      • Таблицы графиков
      • desk Производство бесшовных и сварных труб
      • Осмотр труб
    • ФитингиРазвернуть / Свернуть
      • Руководство по трубным фитингам
      • Производство трубных фитингов
      • Размеры и материалы трубных фитингов
      • Осмотр трубных фитингов - Визуальные и испытания
      • 3 Размеры отводов 45 Градус
      • Размеры трубных колен и обратного канала
      • Размеры тройника
      • Размеры трубного редуктора
      • Размеры заглушки
      • Размеры трубной муфты
    • Фланцы расширяются / складываются
      • Направляющие фланцев
      • Фланец
      • Приварной и удлиненный ge Номинальные характеристики
      • Размеры фланца приварной шейки
      • Размеры фланца RTJ
      • Размеры фланца для соединения внахлест
      • Размеры фланца с длинной приварной шейкой
      • Размеры фланца приварной втулки
      • Размеры фланца с муфтой
      • Размеры глухого фланца
      • Фланец с диафрагмой
      • КлапаныРазвернуть / Свернуть
        • Направляющая клапана
        • Детали клапана и трим клапана
        • Запорный клапан
        • Проходной клапан
        • Шаровой клапан
        • Обратный клапан
        • Поворотный клапан
        • Стержень
        • Пробка
        • Пробка
        • Клапан сброса давления
      • Материал трубыРасширение / сжатие
        • Направляющая материала трубы
        • Углеродистая сталь
        • Легированная сталь
        • Нержавеющая сталь
        • Цветные металлы
        • Неметаллические
        • ASTM A53
            110 0003 ASTM
          • ОлецExpand / Свернуть
            • Направляющая
            • Втулка и размеры
            • Втулка и размеры
            • Резьба и размеры
            • Латролет и размеры
            • Эльболет и размеры
          • Болты шпилькиРазвернуть / свернуть
            • Направляющая шпильки
            • Направляющая шпильки
            • Таблица болтов фланца
            • Размеры тяжелой шестигранной гайки
          • Прокладки и жалюзи для очков Развернуть / Свернуть
            • Направляющая для прокладок
            • Спирально-навитая прокладка
            • Размеры спирально-навитой прокладки
            • Заглушка
            • и заглушка для RTJ
            • Размеры
        • P & IDExpand / Collapse
          • Как читать P&ID
          • Блок-схема процесса
          • Символы P&ID и PFD
          • Символы клапана
        • EquipmentExpand / Collapse
          • PumpExpand / Collapse
              9000 Работа и типы
          • Сосуд под давлениемРазвернуть / свернуть
            • Скоро
        • Курсы
        • ВидеоРазвернуть / свернуть
          • Видеоуроки
          • हिंदी Видео
        • Блог
      • Блог
      • Политики
      • Запрос продукта
    HardHat Engineer HardHat Engineer Search Искать:
    • Главная
    • Трубопровод
      • Трубопровод
        • Руководство по трубам
        • Размеры и график труб
        • Цветовые коды
        • Диаграммы
        • Бесшовные
        • Диаграммы трубопроводов
        • График
        • и производство сварных труб
        • Осмотр труб
      • Фитинги
        • Руководство по трубным фитингам
        • Производство трубных фитингов
        • Размеры и материалы трубных фитингов
        • Осмотр трубных фитингов - визуальный осмотр и испытания
        • Размеры колена - 90 и 45 градусов ree
        • Размеры трубных колен и возвратных труб
        • Размеры тройника
        • Размеры трубного редуктора
        • Размеры заглушки
        • Размеры трубной муфты
      • Фланцы
        • Направляющая фланца
        • Отверстие и длинная приварная шейка 9000 Фланец
        • 9000
        • Размеры фланца приварной шейки
        • Размеры фланца RTJ
        • Размеры фланца для соединения внахлест
        • Размеры фланца с удлиненной приварной шейкой
        • Размеры фланца приварной втулки
        • Размеры фланца для скольжения
        • Размеры заглушки
        • Размеры фланца с диафрагмой
        • 9003
          • Направляющая клапана
          • Детали клапана и трим клапана
          • Запорный клапан
          • Проходной клапан
          • Шаровой клапан
          • Обратный клапан
          • Дроссельный клапан
          • Заглушка
          • Игольчатый клапан
          • Клапан сброса давления
          • Штифт
          • 9000 4
          • Материал трубы
            • Направляющая материала трубы
            • Углеродистая сталь
            • Легированная сталь
            • Нержавеющая сталь
            • Цветной материал
            • Неметалл
            • ASTM A53
            • ASTM A105
          • Olets
            • Olets
            • Weldolet и размеры
            • Sockolet и размеры
            • Threadolet и размеры
            • Latrolet и размеры
            • Elbolet и размеры
          • Болты шпильки
            • Направляющая шпильки
            • Схема затяжки болтов
            • Тяжелый фланец
            • Размеры
          • Прокладки и жалюзи для очков
            • Направляющая для прокладок
            • Спирально-навитая прокладка
            • Размеры спирально-навитой прокладки
            • Прокладка и размер RTJ
            • Очковые слепые и проставки
              • 900&3
              • Как читать P&ID 90 004
              • Схема технологического процесса
              • Символы P&ID и PFD
              • Символы клапана
            • Оборудование
              • Насос
                • Центробежный насос, работающий и типы
              • Резервуар высокого давления
                • Скоро
              9000 .

              Сварка трением: процесс, типы и преимущества

              Сварка трением, как следует из названия, использует трение для сварки соединений. В процессе соединения не используется внешний нагрев.

              Следовательно, сварка трением - это не сварка плавлением, а процесс сварки в твердом состоянии, при котором получаемое соединение часто оказывается таким же прочным, как и основной металл. Этот метод сварки используется в нескольких отраслях промышленности для соединения деталей.

              Давайте подробно рассмотрим, как работает этот метод, и его преимущества.

              СВЯЗАННЫЕ С: ЛАЗЕРНАЯ СВАРКА: ВИДЫ, ПРЕИМУЩЕСТВА И ПРИМЕНЕНИЕ

              Если вы потрете ладони друг о друга, вы заметите, что ваши ладони станут горячими. Чем дальше вы увеличиваете давление и скорость, тем теплее становитесь.

              Тот же принцип тепловыделения за счет трения используется при сварке трением, при которой металлические части трутся друг о друга с чрезвычайно высокой скоростью и давлением.

              Это взаимодействие между двумя поверхностями приводит к механическому трению.Даже если два свариваемых материала могут показаться невооруженным глазом гладкими, на микроскопическом уровне есть неровности. Этих неровностей достаточно, чтобы между их поверхностями возникло трение.

              Когда два материала подвергаются сварке трением, относительное движение между собой и прикладываемое к ним давление создают тепло в точках контакта. По мере продолжения процесса тепловыделение также увеличивается, и два материала начинают становиться вязкими в точках контакта.

              Опять же, движение между двумя частями способствует смешиванию двух частей в точках их контакта, создавая соединение или сварной шов.

              Любой процесс сварки, в котором для создания сцепления используется трение, можно назвать сваркой трением. Однако в основном существует четыре типа процессов сварки трением.

              Давайте кратко рассмотрим каждый из них, чтобы понять тонкие различия между ними.

              Сварка трением с вращением: Один из двух материалов вращается по поверхности другого там, где требуется сварка.В процессе используется сжимающая осевая сила и высокие скорости вращения.

              Эта комбинация вызывает пластикацию двух материалов, что в конечном итоге приводит к их соединению.

              Линейная сварка трением: В этом типе сварки трением один из материалов колеблется относительно другого на высоких скоростях с высокими сжимающими силами при возвратно-поступательном движении. Возникающее в результате тепло, выделяемое на поверхностях, приводит к пластификации металла, и оксиды или поверхностные загрязнения выгорают или удаляются по бокам.

              Сварка трением с перемешиванием: Для сварки трением с перемешиванием используется специальный инструмент с цилиндрическим буртиком и профилированным штифтом для создания сварных швов. Булавка проходит по шву двух заготовок, пока плечо не коснется шва.

              Затем инструмент вращается там, где трение между заплечиком и швом смягчает металл. Профилированный штифт линейно перемещается по линии шва, перемешивая мягкий металл и создавая при этом соединение.

              Точечная сварка трением с перемешиванием: Точечная сварка трением с перемешиванием - это один из типов сварки трением с перемешиванием с одним существенным отличием.

              При сварке трением с перемешиванием инструмент перемещается по шву деталей. Однако при точечной сварке трением с перемешиванием инструмент вращается в точке и не перемещается.

              Он вращается и создает сварной шов, а инструмент поднимается вверх, создавая выходное отверстие, в которое был введен профилированный штифт.

              Скорость, с которой происходит относительное движение, и давление, прикладываемое к заготовкам, зависят от величины тепла, необходимого для создания сварного шва между двумя металлическими частями.Для стали при сварке трением возникает температура от 900 до 1300 градусов Цельсия .

              Многие используют инерционную сварку и сварку трением как синонимы. Однако инерционная сварка - это разновидность сварки трением.

              Если быть точным, инерционная сварка - это разновидность ротационной сварки трением. Сварка получила название "инерционная сварка" из-за способа вращения.

              В этой технике соединения одна из заготовок остается неподвижной, а другая устанавливается на шпиндель.Шпиндель вращается с высокой скоростью для создания трения между двумя металлическими поверхностями.

              Здесь максимальная частота вращения шпинделя фиксирована и зависит от типа материала, который он удерживает, и температуры, которой он должен достичь, чтобы сварить две детали вместе.

              Когда шпиндель достигает максимальной частоты вращения, привод отключается, и неподвижная деталь оказывается во вращающейся детали. Заготовка продолжает вращаться сама по себе за счет силы инерции, возникающей в результате кинетической энергии.

              Не все методы сварки обеспечивают одинаковые результаты соединения. Следовательно, тип сварки выбирается на основе свойств, придаваемых соединению в процессе сварки.

              Давайте обсудим некоторые преимущества использования сварки трением:

              Позволяет соединять разнородные металлы: Одним из основных преимуществ сварки трением является то, что ее можно использовать для соединения разнородных металлов.

              Вот некоторые из распространенных биметаллических фрикционных соединений:

              • Алюминий к стали
              • Медь с алюминием
              • Титан с медью
              • Никелевый сплав со сталью

              Как правило, любой кованый металл можно сваривать трением.Это дает больше свободы инженерам, поскольку они могут создавать биметаллические конструкции благодаря сварке трением.

              Соединения меди с алюминием обычно считаются трудоемкими, но при сварке трением это возможно.

              Нет внешнего приложения тепла или флюса: Сварка трением не требует внешнего тепла или флюса, что делает процесс простым и менее беспорядочным.

              Минимальные дефекты или их отсутствие: Одним из преимуществ твердотельной сварки является то, что она содержит минимальные дефекты или их отсутствие по сравнению со сваркой плавлением.Те же эффекты переносятся и на сварку трением.

              Очень быстрый процесс: Сварка трением считается одним из самых быстрых методов сварки, она выполняется в два или даже в 100 раз быстрее, чем обычные швы плавлением.

              Не требует большой подготовки поверхности: Обработанные, пропиленные или разрезанные поверхности могут быть соединены сваркой трением. Однако присутствие смазочных материалов или масел не допускается для достижения оптимальных условий сварки.

              Сварка трением - это общий термин, охватывающий несколько типов сварочных процессов.Многие отрасли промышленности полагаются на сварку трением для создания соединений, которые иначе не поддаются разборке.

              Это быстрый, эффективный и один из самых популярных вариантов для сварки в твердом состоянии.

              .

              Типы фитингов, используемых в трубопроводах

              Перейти к содержанию
              • На главную
              • ТрубопроводыРазвернуть / Свернуть
                • ТрубопроводРазвернуть / Свернуть
                  • Направляющая труб
                  • Размеры и спецификации труб
                  • Таблицы графиков труб
                  • Коды цветов сварки 9000 9000 Производство труб
                  • Осмотр труб
                • ФитингиРазвернуть / Свернуть
                  • Руководство по трубным фитингам
                  • Производство трубных фитингов
                  • Размеры и материалы трубных фитингов
                  • Осмотр трубных фитингов - Визуальный осмотр и испытания
                  • Размеры отвода
                  • - 90 и 45 градусов Размеры трубных колен и обратных труб
                  • Размеры тройника
                  • Размеры переходника трубы
                  • Размеры заглушки
                  • Размеры трубной муфты
                • Фланцы расширяются / сжимаются
                  • Направляющая фланца
                  • Отверстие и длинная приварная шейка Фланец
                  • Фланец
                  • Мы Размеры фланца с шейкой ld
                  • Размеры фланца RTJ
                  • Размеры фланца для соединения внахлест
                  • Размеры фланца с длинной приварной шейкой
                  • Размеры фланца приварной втулки
                  • Размеры фланца для скольжения
                  • Размеры глухого фланца
                  • Размеры фланца с отверстием
                • Свернуть
                  • Направляющая клапанов
                  • Детали клапана и трим клапана
                  • Запорный клапан
                  • Проходной клапан
                  • Шаровой клапан
                  • Обратный клапан
                  • Поворотный клапан
                  • Пробковый клапан
                  • Игольчатый предохранительный клапан
                  • Давление 9000
                • Материал трубыРасширение / свертывание
                  • Направляющая материала трубы
                  • Углеродистая сталь
                  • Легированная сталь
                  • Нержавеющая сталь
                  • Цветные металлы
                  • Неметаллические
                  • ASTM A53
                  • ASTM A105
                  Collapse
                • 0003
                  • Олет s Направляющая
                  • Бобышка и размеры
                  • Гнездо и размеры
                  • Резьба и размеры
                  • Латролет и размеры
                  • Эльболет и размеры
                • Шпильки Развернуть / Свернуть
                  • Процедура затяжки шпильки
                  • Схема затяжки болта
                  • Размеры тяжелой шестигранной гайки
                • Прокладки и жалюзи для очков Развернуть / Свернуть
                  • Направляющая прокладок
                  • Спирально-навитая прокладка
                  • Размеры спирально-навитой прокладки
                  • Размеры и размеры прокладки RTJ
                  • Размеры
                  • Очки
                  • Очки
                  • Очки
                • P & IDExpand / Collapse
                  • Как читать P&ID
                  • Схема технологического процесса
                  • Символы P&ID и PFD
                  • Символы клапана
                • ОборудованиеРасширение / свертывание
                  • Типы насосов
                  • 021
                  • Сосуд под давлениемРазвернуть / свернуть
                    • Скоро
                • Курсы
                • ВидеоРазвернуть / свернуть
                  • Видеоуроки
                  • हिंदी Видео
                • Запрос продукта
              HardHat Engineer HardHat Engineer Search Искать:
              • Home
              • Трубопровод
                • Трубопровод
                  • Направляющая
                  • Размеры и график труб
                  • Таблицы графиков труб
                  • Цветовые коды сварных труб
                  • Осмотр труб
                • Фитинги
                  • Руководство по трубопроводным фитингам
                  • Производство трубопроводных фитингов
                  • Размеры и материалы трубных фитингов
                  • Осмотр трубных фитингов - визуальный осмотр и испытания
                  • Размеры колена - 90 и 45 градусов
                  • Труба Размеры и возврат
                  • Размеры тройника
                  • Размеры переходника трубы
                  • Размеры заглушки
                  • Размеры трубной муфты
                • Фланцы
                  • Направляющая фланца
                  • Фланец с отверстием и длинной приварной шейкой
                  • Фланец с шейкой
                  • Номинальные параметры
                  • Размеры
                  • Размеры фланца RTJ
                  • Размеры фланца внахлест
                  • Размеры фланца с длинной приварной шейкой
                  • Размеры фланца, приварного внахлест
                  • Размеры скользящего фланца
                  • Размеры глухого фланца
                  • Размеры фланца с диафрагмой
                • Направляющие клапаны
                • Детали клапана и трим клапана
                • Запорный клапан
                • Проходной клапан
                • Шаровой клапан
                • Обратный клапан
                • Поворотный клапан
                • Пробка
                • Игольчатый клапан
                • Материал предохранительного клапана
                • Материал предохранительного клапана
                • 900 02
                • Руководство по материалам труб
                • Углеродистая сталь
                • Легированная сталь
                • Нержавеющая сталь
                • Цветные металлы
                • Неметаллические
                • ASTM A53
                • ASTM A105
              • Olets
                • Olets Welding
                • Гнездо и размеры
                • Резьба и размеры
                • Latrolet и размеры
                • Эльболет и размеры
              • Болты шпильки
                • Направляющая шпильки
                • Процедура затяжки болтов
                • Таблица гаек фланца
                • Размеры 9000
                • Прокладки и жалюзи для очков
                  • Направляющая для прокладок
                  • Спирально-навитая прокладка
                  • Размеры спирально-навитой прокладки
                  • Прокладка и размер RTJ
                  • Очковые слепые и проставки
                  • Размеры для очков
                P&0003
                  • Технологический поток Di agram
                  • Символы P&ID и PFD
                  • Условные обозначения клапанов
                • Оборудование
                  • Насос
                    • Работа и типы центробежного насоса
                  • Сосуд под давлением
                    • Видео Скоро
                  • 9003 Учебные курсы
                  • हिंदी Видео
                • Блог
                .

                Что такое сварка трением с перемешиванием?

                Сварка трением с перемешиванием или FSW - это процесс контактной сварки, в котором тепло, выделяемое трением, используется для сплавления двух разных материалов. Эта техника соединения не требует использования расходных материалов.

                Одним из ключевых преимуществ использования сварки трением с перемешиванием является улучшенный внешний вид готовых деталей по сравнению с другими методами сварки.

                СВЯЗАННЫЙ С: УЛЬТРАЗВУКОВАЯ СВАРКА: ПЕРСПЕКТИВНАЯ ТЕХНОЛОГИЯ ДЛЯ СВАРКИ ПЛАСТИКА И МЕТАЛЛА

                Сварка трением с перемешиванием была разработана и запатентована TWI (Институт сварки) в 1991 году.С тех пор множество отраслей промышленности используют эту технологию сварки из-за ее уникальных характеристик.

                Это происходит в результате сварки трением с перемешиванием двух деталей.

                Процесс сварки трением с перемешиванием

                При сварке трением с перемешиванием используется специально разработанный инструмент, который вращается с высокой скоростью над швами, которые необходимо сварить вместе. Когда инструмент вращается по металлу, между ними образуется тепло.

                Это тепло приводит к тому, что металлы становятся пластичными и плавятся друг с другом.Сварка трением с перемешиванием позволяет сваривать два типа соединений:

                Инструмент, используемый для сварки трением с перемешиванием, состоит из двух частей. Цилиндрическая часть, называемая плечом, которая вращается на шве, и профилированная булавка, выходящая из плеча.

                Штифт сначала просверливается в шов. Затем заплечик вращается на верхней части заготовки в течение определенного времени, пока не будет достигнута оптимальная температура и она не впитается в материалы.

                Затем инструмент перемещается по шву, создавая непрерывный сварной шов.Это возможно благодаря объемному нагреву, производимому инструментом, и перемешиванию металлических частиц профильным штифтом.

                Это из профилированного штифта, который входит в рабочее пространство, где он получает название «Перемешать», поскольку штифт буквально перемешивает размягченные частицы для их сплавления.

                Компания TWI подробно описала, как происходит процесс сварки, когда инструмент перемещается по двум материалам.

                По мере нагрева контактных поверхностей в материалах образуются три типа восстановлений - сварной шов, TMAZ или зона термомеханического воздействия и HAZ или зона термического влияния.

                При сварке трением с перемешиванием сварка подвергается динамической рекристаллизации. Говоря простым языком, микроструктурные зерна металла растут одновременно с деформацией металла.

                Это приводит к гораздо лучшему сцеплению, даже большему, чем то, что достигается при дуговой сварке.

                Сварка трением с перемешиванием и сварка трением - разница

                В некоторых методах сварки для генерации тепла используется трение, и наиболее распространенной из них является сварка трением.В типичном методе сварки трением между двумя деталями возникает тепло за счет перемещения одной детали относительно другой по швам.

                Трение между двумя поверхностями заставляет их плавиться и плавиться.

                Однако это накладывает ограничение на сварку трением, когда дело доходит до настройки заготовки, поскольку она должна иметь возможность перемещать заготовку с высокими скоростями за счет линейного возвратно-поступательного движения.

                Сварка трением с перемешиванием преодолевает это ограничение, фиксируя заготовки на месте, а затем перемещая инструмент по шву, создавая сварной шов в процессе.

                Преимущества сварки трением с перемешиванием

                Преимущества сварки трением с перемешиванием связаны с ее уникальным сварным швом, в котором не используются расходные материалы или технологии экранирующих элементов. Это придает сварному шву следующие характеристики:

                • Готовый сварной шов является бесшовным и эстетичным
                • Он может сваривать несвариваемые иным образом сплавы, такие как алюминий 2ххх и 7ххх
                • Полностью автоматизированный процесс
                • Флюс или защитный агент не требуется
                • Низкие пиковые температуры предотвращают усадку и образование пористости трещин.
                • Ограничения сварки трением с перемешиванием

                В отличие от других сварочных инструментов, инструмент, используемый при сварке трением, должен обеспечивать ковочное действие на заготовки, а не только нагревать их.Таким образом, инструмент должен выдерживать значительные нагрузки и не должен вызывать чрезмерного износа.

                Это одна из причин, по которой сварка трением с перемешиванием обычно не используется для твердых сталей или металлов. Кроме того, при выходе из заготовки профилированный штифт оставляет отверстие.

                Сварка с перемешиванием в основном используется для сварки алюминия и может сваривать почти все типы алюминия, даже современные сплавы Al-Li. Причина, по которой он ограничивается алюминием, заключается в том, что сварка алюминия может происходить при относительно низких пиковых температурах.

                Применение сварки трением с перемешиванием

                Сварка трением с перемешиванием находит применение в самых разных отраслях промышленности, где используется алюминий.

                Судостроение: FSW впервые использовалась для сварки полых алюминиевых панелей для рыболовных судов. Сегодня этот метод сварки широко используется при сварке алюминиевых панелей морозильных камер, используемых в корпусах и корпусах судов.

                Поскольку FSW создает минимальную деформацию, алюминиевые панели сохраняют форму даже при длительных сварных швах.

                Аэрокосмическая промышленность: Алюминиевые топливные баки, используемые в космических аппаратах для хранения криогенного кислорода, содержат ЖСБ. Технология соединения позволяет приваривать купола к цилиндрической конструкции, из которой состоят эти топливные баки.

                Boeing использовал FSW в межкаскадном модуле ракеты Delta II, которая успешно взлетела в августе 1999 года.

                FSW также используется для соединения легких алюминиевых рам, видимых в фюзеляже самолета. Это потому, что эта техника предлагает гораздо более легкую альтернативу болтовым соединениям или клепкам.

                Железная дорога: Сварка трением с перемешиванием находит свое применение на полых профилях и экструдированных элементах Т-образной жесткости при производстве высокоскоростных поездов.

                Автомобильная промышленность: Автомобильная промышленность обратилась к алюминию как к оптимальному материалу для изготовления шасси автомобилей. Следовательно, он является одним из основных приверженцев технологии FSW.

                Обычные методы сварки не могут воспроизвести детали с высокими допусками, такие как FSW. Короткое время сварки FSW также делает его более привлекательным по сравнению с другими видами сварки алюминия.

                СВЯЗАННЫЕ С: РУКОВОДСТВО ПО ЗАРАБОТКЕ ДЕНЕГ НА СВАРКЕ: ВАРИАНТЫ И СОВЕТЫ ДЛЯ КАРЬЕРЫ

                FSW или сварка трением с перемешиванием - один из наиболее уникальных методов сварки, доступных сегодня. Он обеспечивает очень прочные сварные швы без ущерба для веса и эстетики.

                В экосистеме сварки сварка трением с перемешиванием выделяется как уникальный кандидат.

                .

                Смотрите также