Как правильно меряется диаметр металлической трубы


Диаметры труб стальных | таблица стальных труб

диаметры электросварных круглых труб ГОСТ 10704

Параметры трубы (наружный диаметр) Сталь Толщина Стенки, мм
Ø 16 Ø 18 Ø 19 Ø 20 ст3 ст20 09Г2С 08пс от 1 до 3 мм
Ø 25 Ø 28 Ø 30 Ø 32 ст3 ст20 09Г2С 08пс от 1 до 3 мм
Ø 35 Ø 38 Ø 40 Ø 42 ст3 ст20 09Г2С 08пс от 1 до 3 мм
Ø 48 Ø 51 Ø 57 Ø 60 ст3 ст20 09Г2С 08пс от 1 до 3 мм
Ø 76 Ø 89 Ø 102 Ø 108 ст3 ст20 09Г2С от 2 до 10 мм
Ø 114 Ø 127 Ø 133 Ø 159 ст3 ст20 09Г2С от 3 до 10 мм
Ø 219 Ø 273 Ø 325 Ø 377 ст3 ст20 09Г2С от 3 до 12 мм
Ø 426 Ø 530 Ø 630 Ø 720 17Г1С ст3 ст20 09Г2С от 4 до 50 мм
Ø 820 Ø 920 Ø 1020 Ø 1220 17Г1С ст3 ст20 09Г2С от 4 до 50 мм
Ø 1320 Ø 1420 Ø 1520 Ø 1620 17Г1С ст3 ст20 09Г2С от 4 до 50 мм
Ø 1720 Ø 1820 Ø 1920 Ø 2020 17Г1С ст3 ст20 09Г2С от 4 до 50 мм
Ø 2120 Ø 2220 Ø 2520 Ø 2620 17Г1С ст3 ст20 09Г2С от 4 до 50 мм
Ø 2720 Ø 2820 17Г1С ст3 ст20 09Г2С от 4 до 50 мм

диаметр трубы водогазопроводной вгп ГОСТ 3262-75

Условный проход, внутренний диаметр мм

Наружный диаметр, мм

Сталь Толщина стенки, мм
Ø 6 ду Ø 10,2 ст20, ст10, ст1-3 сп/пс 1,8; 2; 2,5
Ø 8 ду Ø 13,5 ст20, ст10, ст1-3 сп/пс 2; 2.2; 2,8
Ø 10 ду Ø 17,0 ст20, ст10, ст1-3 сп/пс 2; 2.2; 2,8
Ø 15 ду Ø 21,3 ст20, ст10, ст1-3 сп/пс 2,35; 2,5; 2,8; 3,2
Ø 20 ду Ø 26,8 ст20, ст10, ст1-3 сп/пс 2,35; 2,5; 2,8; 3,2
Ø 25 ду Ø 33,5 ст20, ст10, ст1-3 сп/пс 2,8; 3,2; 4
Ø 32 ду Ø 42,3 ст20, ст10, ст1-3 сп/пс 2,8; 3,2; 4
Ø 40 ду Ø 48,0 ст20, ст10, ст1-3 сп/пс 3; 3,5; 4
Ø 50 ду Ø 60,0 ст20, ст10, ст1-3 сп/пс 3; 3,5; 4,5
Ø 65 ду Ø 75,5 ст20, ст10, ст1-3 сп/пс 3,2; 4; 4,5
Ø 80 ду Ø 88,5 ст20, ст10, ст1-3 сп/пс 3,5; 4; 4,5
Ø 90 ду Ø 101,3 ст20, ст10, ст1-3 сп/пс 3,5; 4; 4,5
Ø 100 ду Ø 114,0 ст20, ст10, ст1-3 сп/пс 4; 4,5; 5
Ø 125 ду Ø 140,0 ст20, ст10, ст1-3 сп/пс 4; 4,5; 5,5
Ø 150 ду Ø 165,0 ст20, ст10, ст1-3 сп/пс 4; 4,5; 5,5

диаметры труб бесшовных ГОСТ 8732-78 и ГОСТ 8734-75

Параметры трубы (наружный диаметр) Сталь Толщина стенки, мм
трубы горячедеформированые
Ø 20 Ø25 Ø28 Ø30 Ø32 Ø35 Ø38 Ø40 ст10, ст20, 09г2с от 2,5-8
Ø 42 Ø 45 Ø 50 Ø 51 Ø 54 Ø 57 Ø 73 Ø 76 ст10, ст20, 09г2с от 2,5-8
Ø 89 Ø 102 Ø 108 Ø 114 Ø 121 Ø 127 Ø 133 Ø 140 ст10, ст20, 09г2с от 4-12
Ø 146 Ø 152 Ø 159 Ø 168 Ø 180 Ø 194 Ø 203 Ø 219 ст10, ст20, 09г2с от 4-15
Ø 245 Ø 273 Ø 299 Ø 325 Ø 351 Ø 377 Ø 402 Ø 406 ст10, ст20, 09г2с от 4-25
Ø 426 Ø 450 Ø 465 Ø 480 Ø 500 Ø 530 Ø 550 ст10, ст20, 09г2с от 4-25
трубы холоднодеформированые (наружный диаметр)
Ø 6 Ø 7 Ø 8 Ø 9 Ø 10 Ø 11 Ø 12 Ø 13 ст10, ст20, 09г2с от 1-2
Ø 14 Ø 15 Ø 16 Ø 17 Ø 18 Ø 19 Ø 20 Ø 21 ст10, ст20, 09г2с от 1,6-3,5
Ø 22 Ø 23 Ø 24 Ø 25 Ø 26 Ø 27 Ø 28 Ø 29 ст10, ст20, 09г2с от 1,8-4,5
Ø 30 Ø 32 Ø 34 Ø 35 Ø 36 Ø 38 Ø 40 Ø 42 ст10, ст20, 09г2с от 2,5-7
Ø 45 Ø 48 Ø 50 Ø 51 Ø 53 Ø 54 Ø 56 Ø 57 ст10, ст20, 09г2с от 4-9,5
Ø 60 Ø 63 Ø 65 Ø 68 Ø 70 Ø 73 Ø 75 Ø 76 ст10, ст20, 09г2с от 5-12
Ø 80 Ø 83 Ø 85 Ø 89 Ø 90 Ø 95 Ø 100 Ø 102 ст10, ст20, 09г2с от 7-18
Ø 108 Ø 110 Ø 120 Ø 130 Ø 140 Ø 150 Ø 160 Ø 170 ст10, ст20, 09г2с от 9-24
Ø 180 Ø 190 Ø 200 Ø 210 Ø 220 Ø 240 Ø 250 ст10, ст20, 09г2с от 18-24

Диаметры стальных труб

Диаметр трубы по способу измерения разделяется на два вида — внутренний (условный диаметр (Ду, Dy) номинальный размер (в миллиметрах) и внешний (наружный диаметр). По внутреннему диаметру измеряются трубы водогазопроводные, по внешнему электросварные круглые и бесшовные.

Применение труб различных диаметров

В различных отраслях промышленности сегодня широко используются стальные трубы. К ним можно отнести:

  • бытовую;
  • химическую;
  • автомобильную;
  • пищевую;
  • сельскохозяйственную;
  • строительную и другие отрасли.

Прежде всего, такая популярность данного вида трубного проката обусловлена экономической выгодой. Основным отличием стальных труб друг от друга это способы производства, стали из которых изготавливают трубы, а так же диаметры и сечение.

Большое значение для любых работ связанных с использованием труб из стали имеет как внешний, так и внутренний диаметр. Главное принципиальное отличие между измерениями диаметра трубы, это то что внешний диаметр не зависит от толщины стенок, а внутренний зависит к примеры труба 108х3 имеет внешний диаметр 108 мм, а внутренний 102 мм, расчет 108 — (3*2) = 102 мм. Так же есть трубы водогазопроводные, которые измеряются по внутреннему диаметру и имеют следующие размеры ду 15х2,8, в данном случае все наоборот внутренний остается неизменным 15 мм, а внешний будет 20,6 мм, расчет 15 + (2,8*2) = 20,6 мм. Такие трубы изготавливаются по ГОСТу 3262-75 и имеют обозначение ДУ — диаметр условного прохода.

Диаметр труб считается важным, так как показатель служит опорой для проведения классификации изделий. Зная диаметры и толщину стальных труб можно, например, заранее просчитать их необходимое количество, для транспортировки какого – либо вещества по магистрали. И как следствие можно расчитать нагрузку на проектируемую систему, а также выявить слабые места и возможности их устранение.

Разновидности диаметров можно посмотреть в таблице стальных труб

Существующая стандартизация стальных труб необходима для осуществления стыковых соединений с использованием трубопроводной арматуры и четкого определения аналогов данной продукции, изготовленной из других материалов. Ведь соединение деталей из разного материала позволило расширить сферу применения трубопроводов в различных видах промышленности. Именно поэтому всегда значение диаметра металлической трубы должно совпадать, быть тоньше или толще с его соединительным элементом или ее полимерным аналогом, формируя при этом сложную систему. Это, например, дало возможность при масштабном проектировании разнообразнейших магистралей подбирать специалистами различные соединительные узлы.

Ведь если известны значения наружного и внутреннего диаметра, то подобрать необходимые элементы для соединения достаточно легко.

Диаметры стальных труб могут быть:

  • трубы с особо тонкими стенками -тонкостенные;
  • нормальные, усредненные конструкции — обычные;
  • изделия с тонкими стенками — тонкостенные;
  • элементы с толстыми стенками — толстостенные;
  • трубы с особо толстыми стенками — толстостенные.

Также диаметр и толщина стальной трубы заранее может предопределить сферу ее использования.

Стандартное обозначение диаметра труб

Труба электро сварная прямошовнfя 108х3,5 дл12м (Труба э/с пш 108х3,5 дл12м) 108мм-внешний диаметр, 3,5мм-толщина стенки, 12м-длина хлыста.

Труба водогазопроводная 50х3,5 дл6м (Труба вгп ду 50х3,5 дл6м) 50мм-внутренний диаметр, 3,5мм-толщина стенки, 6м-длина хлыста.

Труба бесшовная холоднодеформированная 35х3 н/д (Труба бш хд 35х3 н/д) 35мм-внешний диаметр, 3мм-толщина стенки, н/д- немерной длины(от 4м до 12м)

Труба бесшовная горячедеформированная 60х5 н/д (Труба бш гд 60х5 н/д) 60мм-внешний диаметр, 5мм-толщина стенки, н/д- немерной длины(от 4м до 12м).

Как измерить размеры труб и фитингов

Определение размеров труб, необходимых для вашего проекта, может вызвать затруднения. Многие люди предполагают, что размер трубы - это внешний диаметр трубы, но на самом деле «размер трубы» относится к тому, что называется «номинальным диаметром».

Фитинги могут сбивать с толку. Их внутренний диаметр должен быть достаточно большим, чтобы соответствовать внешнему диаметру трубы. Например, полудюймовый пластиковый колено имеет внешний диаметр около 1-1 / 4 дюйма.

Используйте это руководство, чтобы помочь вам подобрать трубы и фитинги нужных размеров для вашего следующего проекта.

Преобразование фактического диаметра в номинальный

Самый простой способ определить, какой номинальный размер трубы вам нужен, - это выполнить следующие действия и использовать приведенную ниже таблицу преобразования.

Для наружной резьбы

1. Измерьте внешний диаметр (OD) трубы или фитинга:

  • Оберните нить вокруг трубы
  • Отметьте точку соприкосновения струны
  • С помощью линейки или рулетки найдите длину между концом веревки и сделанной вами отметкой (окружность).
  • Разделите окружность на 3.14159

2. Используйте таблицу на этой странице, чтобы найти номинальный диаметр (размер трубы).

Для внутренней резьбы

1. Измерьте внутренний диаметр (ID) трубы или фитинга (используйте линейку или рулетку).

2. Используйте таблицу на этой странице, чтобы найти номинальный диаметр (размер трубы).

Таблица преобразования номинального диаметра

(все измерения в дюймах)

Внешний или внутренний диаметр Десятичный эквивалент Номинальный диаметр Типичная резьба на дюйм
5/16 0.313 1/16 27
13/32 0,405 1/8 27
35/64

0,540

1/4 18
43/64 0,675 3/8 18
27/32 0,840 1/2 14
1-3 / 64 1.050 3/4 14
1-5 / 16 1,315 1 11-1 / 2

1-21 / 32

1,660 1-1 / 4 11-1 / 2
1-29 / 32 1.900 1–1 / 2 11-1 / 2
2-3 ​​/ 8 2,375 2 11-1 / 2
2-7 / 8 2.875 2-1 / 2 8
3-1 / 2 3,500 3 8
4 4.000 3-1 / 2 8
4-1 / 2 4.500 4 8

Трубы и НКТ

Трубы и трубки измеряются по-разному. Размер и название трубки основаны на фактическом внешнем диаметре трубки.

PEX, или трубы из сшитого полиэтилена, - еще одна технология, которая быстро становится популярной, и ее измеряют и называют по внутреннему диаметру.

Пример:

Труба по сравнению с НКТ

Внешний диаметр
Труба размером 1/2 дюйма 27/32 ”
Трубка размером 1/2 дюйма 1/2 ”

Выберите тип резьбы

Одним из наиболее распространенных типов резьбы является национальная трубная резьба (NPT). Они бывают с наружной резьбой (NPT, MPT или MNPT) и с внутренней резьбой (FPT или FNPT). Обычно это коническая резьба, используемая для соединения и герметизации труб.

Другая распространенная резьба - это Национальная стандартная прямая механическая трубная резьба со свободным фитингом (NPSM) . Эти трубы с прямой резьбой обычно используются для механических соединений.

Форма резьбы

BSP обозначает британский стандарт трубы. Он основан на торговом размере, а не на фактическом диаметре.

Торговые трубы и арматура

Выберите сантехническое приложение, необходимое для вашего следующего проекта.

Все еще нужна помощь?

Если у вас по-прежнему возникают проблемы с выбором трубы или фитингов, свяжитесь с нашим центром обслуживания клиентов по адресу [email protected] или позвоните по телефону 855-289-9676.

.

Полное руководство по размерам и спецификациям труб - Бесплатная карманная таблица

Номер в спецификации труб - это стандартный метод определения толщины труб, используемых на технологических предприятиях.

Стандартизация кованой стали Спецификация и размеры труб начинаются с эпохи массового производства. В то время трубы доступны только трех размеров: стандартный вес (STD), сверхпрочные (XS) и двойные сверхпрочные (XXS), в зависимости от системы размеров железных труб (IPS).

В связи с модернизацией различных отраслей промышленности и использованием труб с различным давлением и температурой, трех размеров недостаточно для удовлетворения требований.Это приведет к появлению концепции номера спецификации, которая объединяет толщину стенки и диаметр трубы.

В настоящее время размер трубы определяется двумя наборами номеров

  1. Диаметр трубы / номинальный диаметр
  2. Спецификация трубы, которая представляет собой не что иное, как толщину стенки трубы.

Что такое номинальный размер трубы?

Номинальный размер трубы (NPS) - это число, определяющее размер трубы. Например, когда вы говорите «труба 6 дюймов», это означает, что 6 дюймов - это номинальный размер этой трубы.Однако для труб размером NPS 14 и выше Внешний диаметр такой же, как NPS. Чтобы понять эту концепцию, вы должны изучить способ производства труб.

Производство труб от NPS ⅛ (DN 6) до NPS 12 (DN 300) основано на фиксированном наружном диаметре (OD). Таким образом, при увеличении толщины стенки внутренний диаметр (ID) трубы уменьшается. Таким образом, NPS будет где-то посередине между внешним диаметром и внутренним диаметром трубы.

Изготовление трубы с размером NPS 14 (DN350) и выше соответствует номинальному размеру трубы.В приведенном ниже примере у вас есть более ясная концепция.

Внешний диаметр
дюймов
Внешний диаметр
мм
Толщина
дюймов
Толщина
мм
Внутренний диаметр
дюймов
Внутренний диаметр
мм
Для NPS 2, график 40 труба
2,375 60,3 0,154 3,91 2,067 52,5
Для трубы NPS 14 Schedule 40
14 350 0.438 11,13 13,124 333,3

Из приведенной выше таблицы вы можете видеть, что для NPS 2 внутренний диаметр трубы близок к NPS трубы, а для NPS 14 наружный диаметр трубы такой же, как NPS.

Спецификация трубы sch 80 4 ″

Вы можете легко преобразовать размер из дюйма в мм, умножив его на 25,4 и округлив, как показано ниже;

  1. Внешний диаметр более 16 дюймов округлен до ближайшего 1 мм
  2. Внешний диаметр 16 дюймов и менее округлен до ближайшего 0.1 мм
  3. Толщина стенки трубы округлена с точностью до 0,01 мм

Что такое диаметр трубы (номинальное внутреннее отверстие)?

NPS часто называют NB (номинальное отверстие). Таким образом, нет никакой разницы между NB и NPS. NB - это также американский способ обозначения размеров труб. Я также видел, что когда размеры труб указаны в мм (DN), люди ссылаются на размеры труб в NB. Поэтому, когда кто-то говорит о трубе 25 или 50, в основном, они имеют в виду DN.

Что такое размер трубы DN (номинальный диаметр)?

DN или номинальный диаметр - это международное обозначение (SI или матричное обозначение), а также европейский эквивалент NPS для обозначения размеров труб.Здесь вы должны отметить, что DN показывает размеры трубы иначе, чем NPS.

2-дюймовая труба обозначается просто как DN 50. Вы можете получить любое значение NPS или DN, умножив его на 25. Для облегчения понимания ознакомьтесь с таблицей ниже. Когда вы используете DN, другие измерения не меняются.

Номинальный размер трубы Номинальный диаметр Номинальный размер трубы Номинальный диаметр
NPS (дюймы) DN (мм) NPS (дюймы) DN (мм)
1/8 6 20 500
1/4 8 22 550
3/8 10 24 600
1/2 15 26 650
3/4 20 28 700
1 25 30 750
1 ¼ 32 32 800
1 ½ 40 36 900
2 50 40 1000
2 ½ 65 42 1050
3 80 44 1100
3 ½ 90 48 1200
4 100 52 1300
5 125 56 1400
6 150 60 1500
8 200 64 1600
10 250 68 1700
12 300 72 1800
14 350 76 1900
16 400 80 2000
18 450 На основе ASME B36.10

Из этой таблицы видно, что сначала размер трубы увеличивается на, чем ½, а затем на 1 дюйм. С 6 дюймов до 42 дюймов, увеличивается на 2 дюйма, а затем на 4 дюйма.

Что такое график трубопроводов?

Спецификация труб - это способ указания толщины стенки трубы. Для упрощения заказа трубы комитет ASME разработал номер спецификации, который основан на модифицированной формуле толщины стенки Барлоу.

Определение номера спецификации: Номер спецификации указывает приблизительное значение выражения 1000 x P / S, где P - рабочее давление, а S - допустимое напряжение, оба выражены в фунтах на квадратный дюйм.

Вы можете увидеть формулу расчета спецификации трубопровода, как показано ниже;

Номер спецификации = P / S

  • P - рабочее давление в (фунт / кв. Дюйм)
  • S - допустимое напряжение в (фунт / кв. Дюйм)

Итак, что означает таблица 40?

Таблица 40 - это не что иное, как указатель толщины трубы. Простыми словами можно сказать, что для данного материала труба сортамента 40 может выдерживать определенное давление.

А теперь скажите, какая труба толще сорта 40 или 80?

Труба сортамента 80 толще трубы сортамента 40.Посмотрите на приведенную выше формулу номера графика, допустимое напряжение для материала при данной температуре фиксировано. Это означает, что с увеличением рабочего давления будет увеличиваться номер графика, который является обозначением толщины стенки трубы.

Спецификация труб для труб из нержавеющей стали

Стоимость труб из нержавеющей стали намного выше, чем труб из углеродистой стали. Благодаря коррозионной стойкости нержавеющей стали, усовершенствованию высоколегированной нержавеющей стали и сварке плавлением труб меньшей толщины можно удовлетворительно работать, не опасаясь преждевременного выхода из строя.

Для снижения стоимости материала ASME ввела различные номера графиков для труб и фитингов из нержавеющей стали. В соответствии с ASME B36.19 номер спецификации с суффиксом «S» вводится для трубы из нержавеющей стали. Пример - 10S

Стандартный график труб согласно ASME B36.10 и B36.19

Обратитесь к таблице ниже, в которой суммированы доступные номера графиков для труб из углеродистой и нержавеющей стали на основе ASME B36.10 и B36.19.

Для труб из углеродистой стали и кованого железа согласно ASME B36.10 5, 10, 20, 30, 40, 60, 80, 100, 120, 140, 160, STD, XS, XXS
Для труб из нержавеющей стали согласно ASME B36.19 5S, 10S, 40S, 80S

Обратите внимание на следующее;

  • STD (стандартный) и Schedule 40 имеют одинаковую толщину до NPS 10 (DN 250)
  • Более NPS 10 STD имеет толщину стенки 3/8 дюйма (9,53 мм)
  • XS имеет ту же толщину, что и Спецификация 80 для номинальных размеров до 8 дюймов (DN 200)
  • Для размеров XS с номинальным размером выше 8 дюймов толщина стенки составляет ½ дюйма.(12,5 мм)

Таблица размеров трубы NPS в дюймах

1/2 4 904 904 904 904 904 904 904 900
Таблица номинальных размеров трубы - в дюймах
Размер в дюймах OD 5 5s 10 10s 20 30 40 40s Std 60 80 80s XS 100 120 140 160 XXS Размер в дюймах
1/8 0.405 0,049 0,049 0,068 0,068 0,068 0,095 0,095 0,095 1/8
1/4
1/4 0,065 0,065 0,088 0,088 0,088 0,119 0,119 0,119 1/4
3/850
3/850675 0,065 0,065 0,073 0,091 0,091 0,091 0,126 0,126 0,126 3/8
0,84 0,065 0,065 0,083 0,083 0,095 0,109 0,109 0,109 0,147 0.147 0,147 0,188 0,294 1/2
3/4 1,05 0,065 0,065 0,083 0,083 0,095 0,113 0,113 0,113 0,154 0,154 0,154 0,219 0,308 3/4
1 1,315 0.065 0,065 0,109 0,109 0,114 0,133 0,133 0,133 0,179 0,179 0,179 0,25 0,358 1 1 1/4 1,66 0,065 0,065 0,109 0,109 0,117 0,14 0,14 0,14 0.191 0,191 0,191 0,25 0,382 1 1/4
1 1/2 1,9 0,065 0,065 0,109 0,109 0,125 0,145 0,145 0,145 0,2 0,2 0,2 0,281 0,4 1 1/2
2 2.375 0,065 0,065 0,109 0,109 0,125 0,154 0,154 0,154 0,218 0,218 0,218 0,344 2
2 1/2 2,875 0,083 0,083 0,12 0,12 0,188 0,203 0,203 0.203 0,276 0,276 0,276 0,375 0,552 2 1/2
3 3,5 0,083 0,083 0,12 0,12 0,1 0,216 0,216 0,216 0,3 0,3 0,3 0,438 0,6 3
3 1/2 4 0.083 0,083 0,12 0,12 0,188 0,226 0,226 0,226 0,318 0,318 0,318 0,636 3 1/2 4,5 0,083 0,083 0,12 0,12 0,188 0,237 0,237 0,237 0,337 0.337 0,337 0,438 0,531 0,674 4
5 5,563 0,109 0,109 0,134 0,134 0,258 0,258 0,258 0,258 0,258 0,375 0,375 0,375 0,5 0,625 0,75 5
6 6,625 0.109 0,109 0,134 0,134 0,28 0,28 0,28 0,432 0,432 0,432 0,562 0,719 0,864 650
8,625 0,109 0,109 0,148 0,148 0,25 0,277 0,322 0,322 0,322 0.406 0,5 0,5 0,5 0,594 0,719 0,812 0,906 0,875 8
10 10,75 0,134 0,134 0,165 0,165 0,25 0,307 0,365 0,365 0,365 0,5 0,594 0,5 0,5 0,719 0,844 1 1.125 1 10
12 12,75 0,156 0,156 0,18 0,18 0,25 0,33 0,406 0,375 0,375 0,562 0,68850 0,5 0,5 0,844 1 1,125 1,312 1 12
14 14 0,156 0.156 0,25 0,188 0,312 0,375 0,438 0,375 0,375 0,594 0,75 0,5 0,5 0,938 1,094 1,25 1,406 900 1450 904
16 16 0,165 0,165 0,25 0,188 0,312 0,375 0,5 0,375 0.375 0,656 0,844 0,5 0,5 1,031 1,219 1,438 1,594 16
18 18 0,165 0,165 0,25 0,188 0,312 0,438 0,562 0,375 0,375 0,75 0,938 0,5 0,5 1,156 1,375 1.562 1,781 18
20 20 0,188 0,188 0,25 0,218 0,375 0,5 0,594 0,375 0,375 0,812 1,031 900 0,5 0,5 1,281 1,5 1,75 1,969 20
22 22 0,188 0.188 0,25 0,218 0,375 0,5 0,375 0,875 1,125 0,5 1,375 1,625 1,875 2,125 22
24 0,218 0,218 0,25 0,25 0,375 0,562 0,688 0,375 0,375 0.969 1,219 0,5 0,5 1,531 1,812 2,062 2,344 24
26 26 0,312 0,5 0,5
28 28 0,312 0,5 0,625 0.375 0,5
30 30 0,25 0,25 0,312 0,312 0,5 0,625 0,3754 0,3754
32 32 0,312 0,5 0,625 0,688 0.375 0,5
34 34 0,312 0,5 0,625 0,688 0,375
36 36 0,312 0,5 0,625 0,75 0,375 0.5
38 38 0,375 0,5 904 904 904 904 0,375 0,5
42 42 0.375 0,5
44 44 0,375 904 904 46 0,375 0,5
48 48 375 0,5
Размер в дюймах OD 5 5s 10 10s 20 30 40 40s 60 80 80s XS 100 120 140 160 XXS Размер в дюймах
ASME B36.10M-2015: Сварные и бесшовные трубы из кованой стали
ASME B36.19M-2004: Труба из нержавеющей стали (для 5S, 10S, 40S и 80S)
Не путайте между номиналом 3 1/2 дюйма и наружным диаметром 3,5 дюйма, номиналом 4 дюйма и наружным диаметром 4 000 дюймов

Таблица размеров трубы NPS в мм

4 101,11 101,11 90 2,11 7,11 9008
Таблица номинальных размеров трубы - Номинальный размер трубы в миллиметрах (мм)
DN в мм OD 5 5s 10 10s 20 30 40 40s Std 60 80 80s XS 100 120 140 160 XXS DN в мм
6 10.3 1,24 1,24 1,73 1,73 1,73 2,41 2,41 2,41
8
8 1,65 2,24 2,24 2,24 3,02 3,02 3,02
10 17.1 1,65 1,65 1,85 2,31 2,31 2,31 3,2 3,2 3,2
15 1,65 2,11 2,11 2,41 2,77 2,77 2,77 3,73 3,73 3,73 4.78 7,47
20 26,7 1,65 1,65 2,11 2,11 2,41 2,87 2,87 2,87 3,91 3,91 3,91 3,91 3,91 5,56 7,82
25 33,4 1,65 1,65 2,77 2,77 2,9 3.38 3,38 3,38 4,55 4,55 4,55 6,35 9,09
32 42,2 1,65 1,65 2,77 2,65 1,65 2,77 2,85 2,97 3,56 3,56 3,56 4,85 4,85 4,85 6,35 9,7
40 48.3 1,65 1,65 2,77 2,77 3,18 3,68 3,68 3,68 5,08 5,08 5,08 7,14 10,1650 7,14 10,1650 50 60,3 1,65 1,65 2,77 2,77 3,18 3,91 3,91 3,91 5,54 5.54 5,54 8,74 11,07
65 73 2,11 2,11 3,05 3,05 4,78 5,16 5,16 5,16 7,01 7,01 7,01 9,53 14,02
80 88,9 2,11 2,11 3.05 3,05 4,78 5,49 5,49 5,49 7,62 7,62 7,62 11,13 15,24
15,24
3,05 3,05 4,78 5,74 5,74 5,74 8,08 8,08 8,08 16.15
100 114,3 2,11 2,11 3,05 3,05 4,78 6,02 6,02 6,02 8,56 8,56 8,56 8,56 8,56 8,56 13,49 17,12
125 141,3 2,77 2,77 3,4 3,4 6,55 6.55 6,55 9,53 9,53 9,53 12,7 15,88 19,05
150 168,3 2,77 2,77 4 3,477 2,77 4,4 7,11 7,11 10,97 10,97 10,97 14,27 18,26 21,95
200 219.1 2,77 2,77 3,76 3,76 6,35 7,04 8,18 8,18 8,18 10,31 12,7 12,7 12,7 15.09 18,26 23,01 22,23
250 273 3,4 3,4 4,19 4,19 6,35 7,8 9.27 9,27 9,27 12,7 15,09 12,7 12,7 18,26 21,44 25,4 28,58 25,4
300 323,8 3,96 323,8 3,96 4,57 4,57 6,35 8,38 10,31 9,53 9,53 14,27 17,48 12,7 12,7 21.44 25,4 28,58 33,32 25,4
350 355,6 3,96 3,96 6,35 4,78 7,92 9,53 11,13 9,53 9,53 11,13 9,53 9,53 15,09 19,05 12,7 12,7 23,83 27,79 31,75 35,71
400 406.4 4,19 4,19 6,35 4,78 7,92 9,53 12,7 9,53 9,53 16,66 21,44 12,7 12,7 26,196 36,96 30,99 40,49
450 457 4,19 4,19 6,35 4,78 7,92 11,13 14.27 9,53 9,53 19,05 23,83 12,7 12,7 29,36 34,93 39,67 45,24
500 508 4,7850 4,7850 5,54 9,53 12,7 15,09 9,53 9,53 20,62 26,19 12,7 12,7 32.54 38,1 44,45 50,01
550 559 4,78 4,78 6,35 5,54 9,53 12,7 ,5 9,53 12,7 34,93 41,28 47,63 53,98
600 610 5,54 5,54 6.35 6,35 9,53 14,27 17,48 9,53 9,53 24,61 30,96 12,7 12,7 38,89 46,02 52,37 650
660 7,92 12,7 9,53 12,7
700 711 92 12,7 15,88 9,53 12,7
750 762 6,32 6,35 762 6,32 6,35 12,99 9,9 15,88 9,53 12,7
800 813 7.92 12,7 15,88 17,48 9,53 12,7
850 864 850 864 7,92 864 12.92 9,53 12,7
900 914 7,92 12.7 15,88 19,05 9,53 12,7
950 965 904
1000 1016 9,53 12.7
1050 1067 9,53 12,7 11,7 11,7 9,53 12,7
1150 1168 53 12,7
1200 1219 9,53 9004 9045 9045 9004 9004 9004 9004 9004 мм OD 5 5s 10 10s 20 30 40 40s Std 60 80 80s XS 100 120 140 160 XXS DN в мм
ASME B36.10М-2015: Сварные и бесшовные трубы из кованой стали
ASME B36.19M-2004: Трубы из нержавеющей стали (для 5S, 10S, 40S и 80S)

Номинальный диаметр трубы

Номинальный диаметр трубы Размер
дюймов в дюймах
Номинальный размер трубы
OD в дюймах
DN в мм Номинальный размер трубы
OD в мм
1/8 10,3 6 10,3
1 / 4 13.7 8 13,7
3/8 17,1 10 17,1
1/2 21,3 15 21,3
3/4 26,7 20 26,7
1 33,4 25 33,4
1,25 42,2 32 42,2
1,5 48,3 40 48.3
2 60,3 50 60,3
2,5 73 65 73
3 88,9 80 88,9
3,5 101,6 90 101,6
4 114,3 100 114,3
5 141,3 125 141,3
6 168.3 150 168,3
8 219,1 200 219,1
10 273,1 250 273,1
12 323,8 300 323,8 300
14 14 350 355,6
16 16 400 406,4
18 18 450 457
20 20 500 508
22 22 550 559
24 24 600 610
26 26 650 660
28 28 700 711
30 30 750 9 0050 762
32 32 800 813
34 34 850 864
36 36 900 914
38 38 950 965
40 40 1000 1016
42 42 1050 1067
44 44 1100 1118
46 46 1150 1168
48 48 1200 1219

Вы можете рассчитать внутренний диаметр трубы (ID) с помощью параметра Внешний диаметр ( OD) и толщины трубы по формуле, приведенной ниже.

Внутренний диаметр трубы = [Внешний диаметр трубы] - (2 × толщина стенки трубы)]

Допуск размеров для трубы из углеродистой и нержавеющей стали

Общие допуски на размеры перечислены в ASTM A530. Тем не менее, каждый продукт имеет свои собственные требования, и если они указаны в спецификации, они будут применяться к A530.

Описание Размер Свыше Меньше
Вес NPS 12 (DN 300) и ниже 10% 3.50%
Вес NPS 14 (DN 350) и выше (Примечание-1) 10% 5%
Толщина стенки
Бесшовные и сварные трубы 1⁄8 до 2 ½, вкл., Все соотношения т / д (Примечание-2) 20,00% 12,50%
от 3 до 18 включительно, т / д до 5% вкл. 22,50% 12,50%
От 3 до 18 включительно, т / д> 5% 15,00% 12.50%
20 и больше, сварные, все соотношения т / д (Примечание 3) 17,50% 12,50%
20 и больше, бесшовные, т / д до 5% вкл. 22,50% 12,50%
20 и более, бесшовные, t / D> 5% 15,00% 12,50%
Кованые и расточные трубы 1/8 дюйма (3,2 мм) Нет
Литая труба 1/6 дюйма (1.6 мм) Нет
Внутренний диаметр литой трубы Нет 1,6 мм (1⁄16 дюйма)
Внешний диаметр (Примечание-4)
Внешний диаметр 1⁄8 до 11⁄2, включая 1⁄64 дюйма (0,4 мм) 1/32 дюйма (0,8 мм)
От 1 ½ до 4, включая 1/32 дюйма (0,8 мм) 1/32 дюйма (0,8 мм)
От 4 до 8, включая 1/16 дюйма (1,6 мм) 1/32 дюйма(0,8 мм)
От 8 до 18, включая 3/32 дюйма (2,4 мм) 1/32 дюйма (0,8 мм)
От 18 до 26, включая 1 / 8 дюймов (3,2 мм) 1/32 дюйма (0,8 мм)
От 26 до 34, включая 5/32 дюйма (4,0 мм) 1/32 дюйма (0,8 мм)
Более 34 3/8 дюйма (4,8 мм) 1/32 дюйма (0,8 мм)
Согласно ASTM A530 / A530M-12 и ASTM A999 / A999M-15
  • Примечание-1: Трубы размером NPS 4 (DN 100) и меньше могут взвешиваться партиями; Трубы размером больше NPS 4 (DN 100) должны взвешиваться отдельно.
  • Примечание-2: t = номинальная толщина стенки. D = Внешний диаметр.
  • Примечание-3: Для сварных труб площадь сварного шва не должна ограничиваться превышением допуска.
  • Примечание-4: Для тонкостенных труб овальность в любом одном поперечном сечении не должна превышать 1,5% от указанного внешнего диаметра.

Щелкните изображение ниже, чтобы получить диаграмму размеров трубы для печати

Карманная диаграмма в дюймах

Карманная диаграмма

в миллиметрах

Загрузите диаграммы в формате PDF бесплатно

.

Экспериментальное исследование влияния коррозии на механические свойства подземных металлических труб

Было установлено, что коррозия является наиболее распространенной причиной отказов подземных металлических труб. Обзор опубликованной литературы по коррозии труб показывает, что мало исследований проводилось по влиянию коррозии на механические свойства материалов труб и почти не проводилось исследований по влиянию коррозии на вязкость разрушения. Цель данной статьи - представить комплексную программу испытаний, предназначенную для изучения влияния коррозии на механические свойства металлов в почве.Два типа металлов, а именно чугун и сталь, испытывают на коррозию в трех различных средах. Установлена ​​взаимосвязь между коррозией и ухудшением механических свойств металлов. В статье установлено, что чем более кислая среда, тем больше коррозии подвергается металл, и что коррозия снижает как прочность на разрыв, так и вязкость разрушения металла. Результаты, представленные в статье, могут внести свой вклад в совокупность знаний о коррозионном поведении и его влиянии на механические свойства металлов в почвенной среде, что, в свою очередь, позволяет более точно прогнозировать отказы подземных металлических труб.

1. Введение

Трубопроводы представляют собой важную инфраструктуру, которая играет важную роль в национальной экономике, социальном благополучии и качестве жизни. Большинство труб изготавливаются из металлов, например, из чугуна и стали, и располагаются под землей в грунте. По оценкам, около 85% водораспределительных труб - это чугун и сталь [1]. Из-за их длительной эксплуатации и воздействия агрессивной среды в почве старение и износ металлических труб привели к неожиданно высокому уровню отказов.Например, частота отказов чугунных труб может достигать 39 разрывов на 100 км в год в Канаде [2], в то время как интенсивность отказов водопроводных сетей в Австралии составляет в среднем 20 разрывов на 100 км в год [3]. Хорошо известно, что последствия отказов трубопровода могут быть социально, экономически и экологически катастрофическими, приводя к массовым нарушениям повседневной жизни, значительным экономическим потерям, масштабным наводнениям и последующему загрязнению окружающей среды и даже несчастным случаям и так далее.Следовательно, существует обоснованная необходимость в тщательном расследовании причин отказов труб.

Опыт и исследования отказов труб показывают, что коррозия металлов, как чугуна, так и стали, является наиболее распространенной причиной отказов труб [4, 5]. Поскольку коррозия связана почти со всеми отказами труб, она стала глобальной проблемой для всех заинтересованных сторон, в частности инженеров и управляющих активами подземных металлических труб [6, 7]. Таким образом, за последние несколько десятилетий были предприняты значительные исследования коррозии металлических труб, более вероятно, чугунных труб, о чем, в частности, сообщили Doleac et al.[8], Dean Jr. и Grab [9], O’Day et al. [10], Randall-Smith et al. [11], Kirmeyer et al. [12], Camarinopoulos et al. [13], Sadiq et al. [14], Паносян и др. [15] и так далее. Из-за разных сред механизмы коррозии различны для внутренней и внешней поверхностей трубы. Что касается внутренней коррозии, то в зависимости от вещества, которое транспортируется в трубе, коррозию могут вызывать различные факторы, включая микробное воздействие [16], в то время как внешняя коррозия в основном вызывается коррозионными химическими веществами в почве [17].Коррозия труб в почве - это взаимодействие между материалами труб и почвенной средой [18]. Существует несколько стимулирующих факторов, которые приводят к внешней коррозии трубы в почвенной среде [5, 19]. Влага, температура, значения pH, содержание минеральных солей, сульфиды, органические вещества, осадки и т. Д. Являются основными факторами, способствующими внешней коррозии труб в почве [20]. Коррозия металлов в почвах определяется, прежде всего, совокупным действием этих факторов. Это также зависит от физико-химических характеристик почв.

Обзор опубликованной литературы по коррозии труб, как указано выше (а также см. Ссылки), показывает, что большая часть текущих исследований сосредоточена на механизмах коррозии, развитии коррозии и скорости коррозии с точки зрения материала. Было проведено мало исследований влияния коррозии на изменение механических свойств материалов труб, и почти не проводилось исследований влияния коррозии на вязкость разрушения материалов труб. Как хорошо известно, именно механические свойства материалов труб определяют поведение труб и их возможное разрушение.Поэтому совершенно необходимо тщательно изучить влияние коррозии металла на его механические свойства. Понимание и знание вызываемого коррозией ухудшения механических свойств металлов может предотвратить будущие отказы металлических труб.

Существует два основных вида разрушения труб: разрыв из-за уменьшения толщины стенки трубы и разрушение из-за концентрации напряжений в вершинах трещин, например, коррозионных ямок или, в общем, дефектов в трубы [21].Механические свойства, соответствующие этим двум режимам разрушения, - это предел прочности при растяжении и вязкость разрушения металла. Подробный анализ большинства опубликованных исследований в этой области (см. Ссылки) показывает, что текущие исследования отказов труб, вызванных коррозией, больше сосредоточены на потере прочности, чем на ударной вязкости. При обследовании неисправностей действующих магистральных магистралей установлено, что большинство отказов чугунных водоводов имеют трещинный характер; то есть разрушение вызвано ростом трещины и последующим обрушением трубы [22].Поэтому очень важно изучить ухудшение как прочности на растяжение, так и вязкости разрушения металлов, чтобы обеспечить более точное прогнозирование отказов труб.

Целью данной статьи является экспериментальное исследование влияния коррозии на механические свойства металлов, используемых в качестве материала труб. Комплексная программа испытаний предназначена для наблюдения, мониторинга и оценки коррозионного поведения металлов и его влияния на их механические свойства в различных средах.Два типа металлов, а именно чугун и сталь, испытывают на коррозию в трех средах, что представлено значениями pH. На основе анализа результатов испытаний разработана взаимосвязь между коррозией и ухудшением механических свойств металлов. Считается, что испытания влияния коррозии на механические свойства металлов - одни из немногих. Результаты, полученные в результате испытаний, могут внести вклад в совокупность знаний о коррозионном поведении и его влиянии на механические свойства металла в почвенной среде, что может помочь инженерам и управляющим активами снизить риск отказов металлических труб.

2. Разработка образцов для испытаний
2.1. Материалы образцов

Чугун и сталь были наиболее распространенными материалами трубопроводов до 1980-х годов [21]. Среди различных типов чугуна и стали серый чугун и углеродистая сталь, пожалуй, являются наиболее широко используемыми трубными материалами [12, 23]. В связи с этим целесообразно выбрать эти два типа материалов для исследования коррозии ввиду их широкого применения и длительного срока службы. Чугун и сталь имеют совершенно разные механические свойства, хотя они использовались для тех же целей, что и трубы.Чугун - хрупкий материал, а сталь - пластичная. Чугун широко используется в трубопроводной промышленности из-за его сравнительно невысокой стоимости, но в трубопроводной промышленности его заменили сталью из-за большей прочности и пластичности.

Как известно, на механические свойства металла влияют его химический состав, морфология и микроструктура, которые существенно различаются. В этом исследовании в качестве материалов для испытаний выбраны простая углеродистая сталь Q235 и серый чугун HT200 из-за их широкого использования в трубной промышленности в Китае и наличия на рынке [1, 24].Химический состав стали Q235 и чугуна HT200 показан в таблице 1.


Материал C S P Mn Si

Сталь Q235 0,176 0,023 0,019 0,465 0,233
HT200 чугун 3,2 0,12 0.015 0,9 1,6

.

Процесс производства труб / Методы изготовления бесшовных и сварных труб

Процесс производства бесшовных труб

Бесшовные трубы являются самыми прочными среди всех типов труб, поскольку они имеют однородную структуру по всей длине трубы.

  • Трубы бесшовные выпускаются в различных размерах и в разных комплектациях. Однако существует Ограничение на изготовление труб большого диаметра. Бесшовные трубы широко используются при производстве трубопроводной арматуры, такой как отводы, колена и тройники.
  • Различные производственные процессы описаны подробно;

Процесс стана на оправке

В процессе производства труб на стане на оправке стальная заготовка нагревается до высокой температуры во вращающейся печи. Цилиндрическая полость, также известная как материнская полость, создается с помощью прошивного станка и набора роликов, которые удерживают прошивной станок в центре заготовки.

Внешний диаметр пробойника приблизительно равен внутреннему диаметру готовой трубы.С их помощью достигается внешний диаметр и толщина вторичного вала.

Процесс изготовления оправки на оправке

Процесс производства труб в заглушках Mannesmann

Маннесманн был немецким инженером, который изобрел этот процесс производства труб. Единственное различие между процессом фрезерования на оправке и процессом фрезерования на оправке заключается в том, что при использовании метода оправки внутренний диаметр достигается за один проход, тогда как в Mannesmann возможно многоступенчатое обжатие.

Процесс производства кованых бесшовных труб

В процессе изготовления кованых труб нагретая заготовка помещается в штамповку, диаметр которой немного больше диаметра готовой трубы.Гидравлический пресс ковочного молота с соответствующим внутренним диаметром используется для создания цилиндрической поковки.

По завершении ковки труба подвергается механической обработке для достижения окончательного размера. Процесс изготовления кованых труб используется для производства бесшовных труб большого диаметра, которые невозможно изготовить традиционными методами. Кованые трубы обычно используются для парового коллектора.

Способы производства бесшовных кованых труб

Процессы экструзии

При производстве экструзионных труб нагретая заготовка помещается внутрь фильеры.Гидравлический плунжер прижимает заготовку к прошивной оправке, материал течет из цилиндрической полости между головкой и оправкой. Это действие производит трубу из заготовки.

Иногда из труб производят трубы большой толщины, называемые материнской полостью. Многие производимые вторичные трубы использовали эту материнскую полость для производства труб разных размеров.

экструзионный процесс

Процесс производства сварных труб

Сварные трубы изготавливаются из пластин или продолговатых рулонов или полос.Для изготовления сварной трубы первую пластину или бухту прокатывают по круглому сечению с помощью листогибочной машины или ролика в случае непрерывного процесса.

После прокатки круглого профиля из листа трубу можно сваривать с присадочным материалом или без него. Сварная труба может изготавливаться больших размеров без ограничения сверху. Сварные трубы с присадочным материалом можно использовать при изготовлении отводов и колен с большим радиусом.

Сварные трубы дешевле бесшовных, а также слабые из-за сварного шва.

Для сварки труб используются разные методы сварки.

  • ERW- Электросварка
  • EFW- Электросварка плавлением
  • HFW- Высокочастотная сварка
  • SAW- Дуговая сварка под флюсом (длинный шов и спиральный шов)

ERW Процесс производства стальных труб

В ERW / EFW / HFW: первая пластина имеет цилиндрическую форму, а продольные кромки сформированного цилиндра свариваются оплавлением, низкочастотной контактной сваркой, высокочастотной индукционной сваркой или высокочастотной контактной сваркой. .

erw-pipe производственный процесс

SAW Pipe Manufacturing Process

В процессе сварки SAW для соединения сформированных пластин используется внешний присадочный металл (проволочные электроды). Трубы SAW могут иметь одинарный продольный шов или двойной продольный шов в зависимости от размера трубы.

Трубы SAW также доступны со спиральным швом, который непрерывно наматывается из рулона одной пластины. Производительность спиральной трубы SAW очень высока по сравнению с трубой Straight SAW.Однако спиральные трубы SAW используются только в системах с низким давлением, таких как водоснабжение, некритические технологические процессы и т. Д.

Процесс производства спиральных труб SAW Процесс производства труб SAW.

Смотрите также