Как увеличить теплоотдачу трубы отопления своими руками


повышаем температуру в отопительный сезон

Часто в квартирах, особенно старой застройки, с каждым годом зимой становится всё холоднее. Людям приходится приобретать и использовать электрические отопительные приборы, что приводит к существенному повышению стоимости коммунальных услуг. Но зачем переплачивать за перерасход электроэнергии, если есть более дешёвые варианты исправления ситуации? Сегодня мы расскажем о простых способах увеличения теплоотдачи батарей отопления, которые не требуют значительных затрат, воплотить в жизнь которые вполне по силам любому домашнему мастеру. Стоит рассмотреть и причины, приводящие к снижению температуры в помещении.

Забитые каналы секций радиатора – частая причина снижения температуры в помещении

Содержание статьи

Частые причины уменьшения теплоотдачи батареи отопления

Чаще всего причиной уменьшения теплоотдачи радиаторов становится накипь и ржавчина, скапливающаяся внутри. Если сам радиатор промыть (что должны делать коммунальные службы ежегодно), то теплоотдача значительно увеличится. То же касается и стояков отопления. Однако, своими силами такую процедуру произвести не удастся по причине того, что при производстве подобных работ (даже летом) необходим слив воды из системы. Без помощи специалистов здесь не обойтись. Это же касается и замены радиаторов с чугунных на биметаллические – они имеют большую теплоотдачу. Поэтому на столь сложных и трудоёмких вариантах мы останавливаться не будем. Лучше рассмотрим более простые способы, выполнить которые сможет любой домашний мастер, даже не имеющий опыта работ в подобной области.

Теплоотдача биметаллических радиаторов выше, чем у чугуна

Используем экран-отражатель: применение вспененного полиэтилена

Использование отражающего экрана – довольно популярный метод увеличения теплоотдачи. Вспененный полиэтилен с фольгированным покрытием с одной стороны прекрасно подходит для этих целей. Такой экран (он должен быть больше самого радиатора) помещается за батареей фольгой в направлении комнаты и фиксируется на стене на двухсторонний скотч или жидкие гвозди. Вспененный полиэтилен обеспечивает дополнительное утепление, а фольга отражает тепло, которое до установки экрана прогревало стену, направляя его в помещение.

Важная информация! Лучше всего, когда такие моменты продумываются ещё на этапе монтажа батарей отопления. В этом случае за радиатором можно закрепить стальной ребристый щит, который будет накапливать тепло, после чего направлять его в комнату. Такие щиты удобны, если часто происходят отключения отопления.

Примерно так выглядит экран из фольгированного вспененного полиэтилена

Также в роли экрана неплохо себя зарекомендовали базальтовые плиты с алюминиевым покрытием.

Увеличение теплоотдачи при помощи дополнительных приспособлений и окраски

Для увеличения температуры воздуха в помещении используют специальные кожухи из алюминия, которые одеваются на радиатор. С их помощью увеличивается площадь батареи отопления и, как следствие, их теплоотдача. Стоимость подобных кожухов невелика, а эффект довольно значителен.

Цвет, в который окрашены батареи отопления, тоже имеет большое значение. Лучше для этих целей выбрать более тёмные оттенки. К примеру, радиатор, окрашенный в коричневый цвет имеет теплоотдачу больше, чем белые, на 20-25%.

Такой кожух улучшает внешний вид и увеличивает теплоотдачу

Улучшение конвекции, путём увеличения циркуляции воздуха

Каждый знает, что улучшение циркуляции воздуха способствует более быстрому прогреву помещения. Для этих целей можно использовать вентилятор, который устанавливается таким образом, чтобы достигнуть максимального потока тёплого воздуха в сторону помещения.

Полезная информация! Если дома имеются кулеры от компьютеров, которые не используются, можно их установить под радиатором, направив поток воздуха вверх. Это максимально увеличит конвекцию, в результате чего в комнате станет значительно теплее.

Увеличить конвекцию (если радиатор утоплен под подоконником) можно, прорезав в подоконнике отверстия и закрыв их экранами или декоративными крышками. Таким образом, тёплый воздух не будет задерживаться в нише, что улучшит циркуляцию.

Эту страну не победить! Самостоятельный монтаж вентиляторов для улучшения конвекции:

Общие правила улучшения теплоотдачи радиаторов отопления

Для того чтобы в будущем не сталкиваться с уменьшением теплоотдачи батарей, стоит об этом подумать ещё на этапе монтажа радиаторов. Основными правилами являются:

  • обязательное утепление стены за радиатором, возможная установка стального экрана;
  • установка биметаллических батарей взамен чугунных;
  • монтаж кранов на входе и выходе радиатора (это позволит при необходимости самостоятельно промыть секции или добавить дополнительные без отключения и слива всей системы).

Если соблюдать эти нехитрые правила при монтаже, впоследствии будет намного проще увеличить температуру в помещении без обращения за помощью к специалистам. А это дополнительная экономия семейного бюджета.

Не очень удачное решение:решётка перекрывает путь теплу, а подоконник добавляет проблем с конвекцией

Подведём итог

Способов увеличить теплоотдачу радиаторов отопления очень много. Сегодня мы рассмотрели лишь основные из них. Однако, следует помнить, что всегда проще всё продумать заранее, на стадии монтажа, чем прикладывать множество усилий впоследствии, без уверенности в том, что результат будет значительным. К сожалению, в России всё делается на «авось». Заключительным советом редакции Homius.ruбудет такая рекомендация: думайте о будущем и не жалейте средств при монтаже. Сэкономленные сегодня финансовые средства могут завтра обернуться затратами, которые в разы превысят Вашу экономию.

Наиболее оптимальный вариант – всё тепло поднимается вверх, благодаря чему создаётся нормальный теплообмен

Надеемся, что изложенная в сегодняшней статье информация была интересна и полезна нашему Уважаемому читателю. Несмотря на то, что мы постарались изложить всё достаточно подробно, возможно, у Вас остались вопросы по материалу. В этом случае задавайте их в обсуждениях ниже – редакция Homius.ru с удовольствием на них ответит в максимально сжатые сроки. Если вы знаете способ улучшить теплоотдачу радиаторов, который не нашёл отражения в сегодняшней статье, просим поделиться им с другими домашними мастерами – эта информация будет весьма полезна. А напоследок предлагаем посмотреть короткий, но достаточно информативный видеоролик по сегодняшней теме.

 

Предыдущая

Инженерия🔥 Невидимое тепло: гипсокартонное инфракрасное отопление

Следующая

Инженерия☀ Тепловая завеса на входную дверь: комфортная температура в помещении при любом морозе

Понравилась статья? Сохраните, чтобы не потерять!

ТОЖЕ ИНТЕРЕСНО:

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

Конвективная теплопередача

Тепловая энергия, передаваемая между поверхностью и движущейся жидкостью с разными температурами - известна как конвекция .

На самом деле это комбинация диффузии и объемного движения молекул. Вблизи поверхности скорость жидкости мала, и преобладает диффузия. На расстоянии от поверхности объемное движение усиливает влияние и преобладает.

Конвективная теплопередача может быть

  • принудительной или вспомогательной конвекцией
  • естественной или свободной конвекцией

принудительной или вспомогательной конвекцией

принудительной конвекцией, когда поток жидкости индуцируется внешняя сила, такая как насос, вентилятор или смеситель.

Естественная или свободная конвекция

Естественная конвекция вызывается выталкивающими силами из-за разницы плотности, вызванной колебаниями температуры в жидкости. При нагревании изменение плотности в пограничном слое заставит жидкость подниматься и заменяться более холодной жидкостью, которая также будет нагреваться и подниматься. Это продолжающееся явление называется свободной или естественной конвекцией.

Процессы кипения или конденсации также называют конвективными процессами теплопередачи.

  • Теплопередача на единицу поверхности за счет конвекции была впервые описана Ньютоном, и это соотношение известно как закон охлаждения Ньютона .

Уравнение конвекции может быть выражено как:

q = h c A dT (1)

, где

q = теплопередача за единицу времени (Вт, БТЕ / ч)

A = площадь теплопередачи поверхности (м 2 , футы 2 )

h c = коэффициент конвективной теплопередачи процесса ( Вт / (м 2o C, Btu / (фут 2 h o F) )

dT = разница температур между поверхностью и основной жидкостью ( o C, F)

Коэффициенты теплопередачи - единицы

Коэффициенты конвективной теплопередачи

Коэффициенты конвективной теплопередачи - ч c - в зависимости от t тип среды, будь то газ или жидкость, и свойства потока, такие как скорость, вязкость и другие свойства, зависящие от потока и температуры.

Типичные коэффициенты конвективной теплопередачи для некоторых распространенных применений, связанных с потоками жидкости:

  • Свободная конвекция - воздух, газы и сухие пары: 0,5 - 1000 (Вт / (м 2 K))
  • Свободная конвекция - вода и жидкости: 50 - 3000 (Вт / (м 2 K))
  • Принудительная конвекция - воздух, газы и сухие пары: 10 - 1000 (Вт / (м 2 K))
  • Принудительная конвекция - вода и жидкости: 50 - 10000 (Вт / (м 2 K))
  • Принудительная конвекция - жидкие металлы: 5000 - 40000 (Вт / (м 2 K))
  • Кипящая вода: 3.000 - 100,000 (Вт / (м 2 K))
  • Пары конденсированной воды: 5.000 - 100,000 (Вт / (м 2 K))
Коэффициент конвективной теплопередачи для воздуха

Коэффициент конвективной теплопередачи для потока воздуха может быть приблизительно равен

ч c = 10,45 - v + 10 v 1/2 (2)

где

h c = коэффициент теплопередачи (кКал / м 2 ч ° C)

v = относительная скорость между поверхностью объекта и воздухом (м / с)

Начиная с

1 ккал / м 2 ч ° С = 1.16 Вт / м 2 ° C

- (2) можно изменить на

h cW = 12,12 - 1,16 v + 11,6 v 1/2 (2b)

где

ч cW = коэффициент теплопередачи (Вт / м 2 ° C )

Примечание! - это эмпирическое уравнение, которое может использоваться для скоростей от 2 до 20 м / с .

Пример - конвективная теплопередача

Жидкость течет по плоской поверхности 1 м на 1 м. Температура поверхности 50 o C , температура жидкости 20 o C и коэффициент конвективной теплопередачи 2000 Вт / м 2o С . Конвективную теплопередачу между более горячей поверхностью и более холодным воздухом можно рассчитать как

q = (2000 Вт / (м 2o C)) ((1 м) (1 м)) ((50 o C) - (20 o C))

= 60000 (Вт)

= 60 (кВт)

Калькулятор конвективной теплопередачи

Таблица конвективной теплопередачи

.

Страница не найдена | MIT

Перейти к содержанию ↓
  • Образование
  • Исследовательская работа
  • Инновации
  • Прием + помощь
  • Студенческая жизнь
  • Новости
  • Выпускников
  • О MIT
  • Подробнее ↓
    • Прием + помощь
    • Студенческая жизнь
    • Новости
    • Выпускников
    • О MIT
Меню ↓ Поиск Меню Ой, похоже, мы не смогли найти то, что вы искали!
Попробуйте поискать что-нибудь еще! Что вы ищете? Увидеть больше результатов

Предложения или отзывы?

.

Теплопередача и энтропия | IntechOpen

1. Введение

Когда вы читаете стандартный учебник по термодинамике (например, [1-3]) как одну из наиболее фундаментальных формул, вы обнаружите, что

указывает на то, что (процесс) количество тепла (δQ), очевидно, близко связаны с (государственной) количественной энтропией (dS), здесь обе записаны как бесконечно малые величины.

Если же вы проделаете то же самое со стандартным учебником по теплопередаче (например, [4] с 1024 страницами или [5] с 1107 страницами), вы не найдете энтропии ни в указателе этих книг, ни в тексте. .

Для этого может быть две причины: либо энтропия оказалась несущественной для анализа теплопередачи, либо энтропия сознательно игнорируется сообществом теплопередачи, несмотря на ее актуальность. Что является правдой, это пока открытый вопрос, и на него можно ответить, только если принять во внимание термодинамические соображения.

В термодинамике значение энтропии по отношению к теплопередаче не вызывает никаких споров, в ее значимости следует убедить сообщество теплопередачи.Лучше всего это можно сделать, продемонстрировав преимущества включения энтропии в анализ теплопередачи, а также показывая недостатки, с которыми приходится сталкиваться, когда энтропия игнорируется.

2. Термодинамический взгляд на теплообмен

2.1. Общие соображения

Инженеры, использующие фразу «теплопередача», не будут обеспокоены представлением о том, что тепло перемещается через границу системы и затем накапливается в ней, увеличивая ее теплосодержание.

Однако такая аргументация нарушает как минимум два принципа термодинамики и упускает из виду важный момент.С точки зрения термодинамики тепло - это величина процесса, которая описывает определенный способ передачи энергии через границу системы. И, конечно, это количество не может быть сохранено, может храниться только энергия, перемещаемая им.

И решающий момент: передача энергии в виде тепла в систему коренным образом отличается от передачи энергии в процессе работы. Энергия, передаваемая в виде тепла и работы, хотя и может быть одинаковым, имеет совсем другое качество, если она является частью энергии системы.Чтобы выразить это в простой и пока еще не точной форме: не только количество энергии учитывается в процессах передачи энергии (например, передача тепла), но также качество энергии и изменение качества во время процесса передачи. . Если это так, то должна быть мера качества и его потенциального ухудшения в процессах передачи энергии. Здесь энтропия играет решающую роль - даже в рассмотрении теплопередачи.

Из очень четкого принципа сохранения энергии (термодинамически сформулированного как первый закон термодинамики) мы знаем, что энергия, заданная как первичная энергия, никогда не теряется при использовании в технических устройствах, а в конечном итоге оказывается частью внутренней энергии окружающей среды.Но тогда это уже бесполезно. Очевидно, что энергия обладает определенным потенциалом, который может потеряться на пути от первичной энергии к внутренней энергии окружающей среды.

В термодинамике есть полезное определение, с помощью которого можно охарактеризовать качество энергии, которое было впервые предложено в [6]. Это определение в первую очередь относится к энергии, которая подвергается процессам передачи работы или тепла. Согласно этому определению энергия состоит из двух частей: эксергии, и энергии, .В рамках этой концепции эксергия - драгоценная часть энергии. Это та часть, которую можно использовать в работе, пока она не станет частью внутренней энергии окружающей среды. Иногда эксергия также называется , доступная работа . Оставшаяся часть энергии называется анергией. Согласно второму закону термодинамики эксергия может потеряться (может быть преобразована в анергию) в необратимых процессах, но никогда не может возникнуть. Любая передача энергии работой или теплом, таким образом, может либо сохранить эксергетическую часть энергии в обратимом процессе, либо уменьшить ее в необратимом.

Что касается теплопередачи, важны два аспекта: первый - это количество энергии, передаваемой теплом, а второй - количество эксергии, теряемой в этом (теплопередающем) процессе. Игнорирование энтропии означает, что можно учесть только первый аспект. Для полной характеристики процесса теплопередачи должны быть учтены оба аспекта, то есть должны быть указаны две физические величины. Они могут быть

В процессе теплопередачи обе величины не зависят друг от друга, потому что определенное количество энергии (q˙) может передаваться с различным снижением качества, т.е.е. с разной степенью необратимости (ΔT). Здесь ΔT является косвенной мерой снижения качества энергии в процессе передачи, поскольку ΔT = 0 является обратимым пределом необратимого процесса с ΔT> 0. Когда требуются две независимые величины, то в контексте безразмерного описания процессов теплопередачи необходимы два безразмерных параметра. В разделе 3 будет обсуждаться, чего не хватает, когда число Нуссельта Nualone используется для характеристики процесса теплопередачи.

В термодинамике два аспекта переноса энергии и ее обесценивания необратимыми процессами количественно оцениваются путем введения энтропии и ее генерации в ходе необратимых процессов. В этом контексте энтропия является мерой структуры системы, хранящей рассматриваемую энергию, то есть энергия может храниться более или менее упорядоченным образом. Это снова может быть выражено в терминах эксергии по сравнению с анергией переданной и накопленной энергии.

2.2. Изменение энтропии в процессах передачи энергии

Для большинства соображений представляет интерес не абсолютное значение энтропии, а ее изменение во время определенного процесса, такого как процесс передачи тепла.Это изменение энтропии в процессе переноса обычно бывает двояким:

  1. Перенос - изменение энтропии в обратимом процессе,

  2. Генерация - изменение энтропии, когда процесс переноса необратим, т.е. необратим.

Таким образом, в реальном (необратимом) процессе изменение энтропии всегда является суммой обоих, то есть (i) + (ii).

Для процесса теплопередачи между двумя уровнями температуры Ta и Tb две части (i) и (ii) равны

dgS˙ = δQ˙ (1Ta − 1Tb) = δQ˙Ta− TbTaTb = δQ˙ΔTTaTbE3

Уравнение (2) соответствует к эк.(1) во введении, теперь в терминах скорости непрерывного процесса. Уравнение (3) утверждает, что генерация энтропии приводит к увеличению энтропии, когда энергия передается от одной системы (a) с высокой температурой (то есть с низкой энтропией) к другой системе (b) с низкой температурой (то есть с высокой энтропией). Таким образом, общее изменение энтропии в таком процессе составляет

. На рисунке 1 такой процесс проиллюстрирован для конвективной теплопередачи от потока в системе (a) с m˙ato потоком в системе (b) с m˙b.Стенка между обоими потоками - диабатическая, стенки в окружающую среду - адиабатические.

Изменение энтропии в ур. (3) строго говоря, это только приближение. Он основан на предположении, что в (а) и (б) реальные распределения температуры могут быть аппроксимированы их (постоянными) средними значениями и что падение температуры с (а) до (б) полностью происходит в стенке между ними. системы, см. рисунок 1 для иллюстрации этого приближения. В разделе 4 учитывается реальное распределение температуры, чтобы определить изменение энтропии при образовании без приближения.

Хотя это не тема данной главы, следует упомянуть, что (i) и (ii) являются для передачи энергии работой:

с δΦ δ как скорость диссипации механической энергии в поле потока, участвующем в передаче обработать. То, что всегда dtS˙ = 0, справедливо для рабочей передачи энергии, показывает фундаментальное различие двух способов передачи энергии, то есть посредством тепла или работы, ср. экв. (2) для передачи энергии теплом.

Рис. 1.

Конвективная теплопередача от потока в (a) к потоку в (b) над элементом поверхности dA (1) Распределение реальной температуры (2) Модель средней температуры

2.3. Обесценивание энергии в процессе теплопередачи и концепция энтропийного потенциала

Когда в процессе передачи энергии теряется эксергия, «ценность» энергии уменьшается, поскольку эксергия как драгоценная часть энергии уменьшается. Это называется девальвацией энергии во время процесса передачи и непосредственно связано с генерированием-изменением энтропии, ср. экв. (3).

Потеря эксергии и генерируемая энтропия взаимосвязаны так называемой теоремой Гуи-Стодолы, см., Например, [7].Он читается как

Здесь T∞ - температура окружающей среды, а Ele - потеря мощности эксергии E˙e уровня энергии E˙ после подразделения E˙ на эксергетическую и анергическую части, E˙e и E˙a, соответственно. .

Для одной операции передачи, обозначенной it, тогда существуют конечные потери эксергии

с S˙g, ias генерация энтропии в операции передачи i. Эту генерацию энтропии можно и нужно рассматривать в контексте тех девальваций скорости передачи энергии E˙, которые произошли до операции передачи i и будут происходить после нее.Эта идея принимает во внимание, что определенная энергия (скорость) всегда начинается как первичная энергия, являющаяся эксергией в целом, и, наконец, заканчивается как часть внутренней энергии окружающей среды, затем как анергия в целом. В [8] это было описано как «цепочка девальвации» в отношении скорости передачи энергии E˙ с процессом, охватывающим одно звено этой цепи.

Для суммы всех однократных операций передачи, которые полностью обесценивают энергию со 100% эксергии до 100% анергии,

удерживается.Здесь S˙g - это общее образование (скорость) энтропии, то есть увеличение энтропии окружающей среды, когда E˙ становится частью его внутренней энергии.

В [8] эта величина называется энтропийным потенциалом :

энергии E˙, участвующей в процессе передачи энергии (здесь: тепла). Принимая это за эталонную величину, так называемое число девальвации энергии

Ni≡ S˙g, iS˙g = T∞S˙g, iE˙E11

указывает, какая часть энтропийного потенциала энергии используется в определенной передаче процесс i с Ni = 0 для обратимого процесса.Примеры будут приведены позже.

3. Инженерный взгляд на теплопередачу

Как упоминалось ранее, инженеры, обученные решать проблемы теплопередачи с помощью таких книг, как [4], мало или совсем не заботятся об энтропии. Они характеризуют ситуации теплопередачи коэффициентом теплопередачи

или, более систематически, числом Нуссельта

В обоих случаях q˙w и ΔT объединяются в одной оценочной величине, так что два независимых аспекта теплопередачи

  • сумма, связанная с q˙wand

  • , изменение качества, связанная с ΔT

, отдельно не фиксируется.Вторая величина оценки требуется для исчерпывающей характеристики ситуации теплопередачи. Это может быть число девальвации энергии Nia согласно ур. (11).

Когда Nia учитывает качество теплопередачи, число Нуссельта охватывает количественный аспект в следующем смысле. Часто либо ΔTor q˙ware назначают в качестве теплового граничного условия. Затем число Нуссельта количественно определяет теплопередачу, предоставляя возникающий тепловой поток или требуемую разницу температур, соответственно.Оба аспекта являются количественными, поэтому вопрос о качестве остается открытым. Тогда это решается числом обесценения энергии Ni.

Так как число Нуссельта хорошо известно в сообществе теплопередачи, а число обесценивания энергии Ni - нет, Ni будет дополнительно объяснен в связи с его физическими предпосылками в следующем разделе.

4. Физика, лежащая в основе девальвации энергии. Число

Согласно закону теплопроводности Фурье, см., Например, [4] или [9],

δQ˙ → = −k (grad T) dAE14

i.е. тепловой поток возникает по (отрицательному) градиенту температуры. Передаваемая таким образом энергия уменьшает свою эксергетическую часть, поскольку эта эксергетическая часть равна

с коэффициентом Карно

Здесь снова T∞ - это температура окружающей среды, так что эксергетическая часть Q˙ после того, как ее уровень температуры Thas достигнет температуры окружающей среды, равно нулю.

Эти постоянные эксергетические потери, когда теплопередача происходит с gradT> 0 (необратимая теплопередача) в соответствии с теоремой Гуи-Стодола (7), сопровождаются генерацией энтропии, которая здесь может быть записана как

или после интегрирования локальной скорости генерации энтропии S˙g '' 'как

, что в декартовых координатах читается как

dgS˙ = kT2 [(∂T∂x) 2+ (∂T∂y) 2+ (∂T∂z) 2] dVE19

Обратите внимание, что это уравнение .(19) сводится к ур. (3) когда существует линейное распределение температуры только в направлении x, так что ∂T / ∂x = ΔT / Δx, dV = dAΔx и ∂Q˙ = −k (ΔT / Δx) dA.

Сравнение ур. (3) и (19) показывает, что

в модели средней температуры в соответствии с ур. (3) и рисунок 1 (2) представляет собой интегрирование относительно δQ˙, в то время как с реальным распределением температуры в соответствии с ур. (19) и рис. 1 (1) это интегрирование по объему, учитывающее скорость генерации локальной энтропии.

В обоих случаях определяется S˙g, i, которое представляет собой общее генерирование энтропии за счет теплопроводности в процессе передачи i.Число девальвации энергии относится к энтропийному потенциалу Q˙, то есть к Q˙ / T∞, так что

Ni = k T∞Q˙∫V1T2 [(∂T∂x) 2+ (∂T∂y) 2 + (∂T∂z) 2] dVE21

- это процент используемого энтропийного потенциала энергии E˙, который в процессе i передается в виде тепла Q˙. Обратите внимание, что часть энтропийного потенциала уже использовалась на пути E˙старта в качестве первичной энергии в ситуации, когда она передается в виде тепла, а оставшаяся часть энтропийного потенциала после процесса теплопередачи может быть использована в последующих процессы передачи энергии.Это может проиллюстрировать, почему важно видеть определенный процесс передачи в контексте общей цепочки обесценивания энергии, начиная с первичной энергии и заканчивая частью внутренней энергии окружающей среды. Подробнее об этой концепции см. [8] .

5. Конвективная теплопередача

Часто конвективная теплопередача происходит в технических приложениях, таких как электростанции, системы отопления или охлаждения. Затем задействуется второй поток энергии, который представляет собой рабочую скорость потока, которая необходима для поддержания потока, в котором или из которого происходит передача тепла.Этот поток энергии, применяемый в качестве работы, представляет собой чистую эксергию, которая теряется в процессе рассеяния во время конвективной теплопередачи.

5.1. Потери из-за рассеяния механической энергии

В гидромеханике потери в поле течения обычно характеризуются коэффициентом сопротивления cD для внешних потоков и коэффициентом потери напора K для внутренних потоков, которые представляют собой безразмерную силу сопротивления FD и безразмерную потерю давления Δp соответственно . В таблице 1 оба определения показаны вместе с альтернативным подходом, основанным на скорости генерации энтропии S˙g, D из-за рассеяния механической энергии (индекс: D).Подробнее об этом альтернативном подходе см. [10]. Поскольку оба коэффициента, cD и K, учитывают скорость диссипации Φ˙ в поле потока и согласно уравнению. (6) δΦ˙ = TdgS˙ диссипация механической энергии соответствует потере эксергии только при T = T∞, ср. экв. (7). Когда поток возникает при температуре, отличной от температуры окружающей среды T∞, cD и K учитывают диссипацию, но не потерю эксергии в потоке.

Тогда необходим второй коэффициент, который лучше всего определяется как число разрушения эксергии NE, аналогичное числу девальвации энергии, ур.(11), т.е.

традиционный подход альтернативный подход
внешний поток cD = FDρ2u∞2A cD = Tρ2u∞168 внутренний , D расход K = Δpρ2um2 K = Tρ2um3AS˙g, D

Таблица 1.

Коэффициенты сопротивления и потери напора; общепринятые и альтернативные определения из [10]. u∞: скорость набегающего потока, um: средняя скорость в поперечном сечении

, которая для внешнего потока с E˙ = u∞22m˙ = ρ2u∞3Ais (c.f. таблица 1):

NE = T∞TcD (число разрушения эксергии) E23

и для внутреннего потока с E˙ = um22m˙ = ρ2um3Ais (см. таблицу 1):

NE = T∞TK (число разрушения эксергии) E24

Примечание что NE не является числом девальвации энергии в смысле его определения в ур. (11) поскольку эталонная величина E˙in eq. (22) не является скоростью передачи энергии (которая может быть обесценена в процессе передачи). Вместо этого в конвективном процессе участвует кинетическая энергия. Он служит эталонной величиной для работы потока, необходимой для поддержания потока.

Отличается от Ни в соответствии с ур. (11), для которого по определению всегда 0≤Ni≤1, NE не ограничивается этим диапазоном. Например, NE = 3 для внутреннего потока означает, что потери эксергии (разрушение эксергии) во время этого процесса в три раза выше, чем кинетическая энергия, участвующая в конвективном процессе. Обратите внимание, что обесценивается не кинетическая энергия, а энергия, которая входит в систему в виде работы потока, являясь чистой эксергией вначале и частично или полностью преобразованной в анергию в процессе диссипации.

5.2. Оценка конвективной теплопередачи

Поскольку обе энергии в процессе конвективной теплопередачи (необходимая работа потока и передаваемая тепловая энергия) подвергаются обесцениванию, они обе должны учитываться при оценке процесса конвективной теплопередачи, например, с целью его оценки. оптимизация.

Что касается потерь, то учитывается потерянная эксергия обеих энергий, участвующих в процессе конвективной теплопередачи. Эти эксергетические потери характеризуются соответствующими скоростями образования энтропии S˙g, iin eq.(11) и S˙g, Din eq. (22). Они могут быть добавлены для обеспечения общей скорости генерации энтропии в процессе конвективной теплопередачи и служат в качестве целевой величины в процедуре оптимизации. Это разумный критерий для всех тех случаев, когда эксергетическая часть процесса передачи энергии учитывается как цикл мощности. В таком процессе эксергия, теряемая перед турбиной, не может быть преобразована в механическую энергию в турбине, что снижает эффективность энергетического цикла.

Когда скорости генерации энтропии должны быть определены из подробных численных решений процесса конвективной теплопередачи, S˙g, если следует из ур.(19), (20) в то время как S˙g из-за диссипации определяется как

S˙g = ∫ dgS (число разрушения эксергии) ˙E25

с

dgS˙ = μT (2 [(∂u∂x) 2+ ( ∂u∂y) 2+ (∂u∂z) ​​2] + (∂u∂y + ∂v∂x) 2+ (∂u∂z + ∂w∂x) 2+ (∂v∂z + ∂w∂y) 2) dVE26

Когда поток турбулентный, dgS˙ согласно ур. (19) и (26) подходят только для подхода прямого численного моделирования (DNS) в отношении турбулентности, как в примере, показанном в [11]. Поскольку решения DNS с их чрезвычайными вычислительными требованиями не могут использоваться для решения технических проблем, вместо них решаются усредненные по времени уравнения (усредненные по Рейнольдсу Навье-Стокса: RANS).Затем также необходимо усреднить dgS˙ по времени, что приведет к:

dgS˙C = dgS˙C¯ + dgS˙C'E27

и

dgS˙D = dgS˙D¯ + dgS˙D'E28

с dgS˙ C¯ и dgS˙D¯ для генерации энтропии в усредненном по времени поле температуры и скорости, а также dgSÀC'и dgSÀD' для усредненных по времени вкладов соответствующих флуктуирующих частей.

Все четыре части равны

dgS˙C¯ = kT2 [(∂T¯∂x) 2+ (∂T¯∂y) 2+ (∂T¯∂z) 2] dVE29dgS˙C '= kT2 [(∂ T'∂x) 2¯ + (∂T'∂y) 2¯ + (∂T'∂z) 2¯] dVE30dgS˙D¯ = μT (2 [(∂u¯∂x) 2+ (∂u¯ ∂y) 2+ (∂u¯∂z) 2] + (∂u¯∂y + ∂v¯∂x) 2+ (∂u¯∂z + ∂w¯∂x) 2+ (∂v¯∂z + ∂ w¯∂y) 2) dVE31dgS˙D '= μT (2 [(∂u'∂x) 2¯ + (∂u'∂y) 2¯ + (∂u'∂z) 2¯] + (∂u '∂y + ∂v'∂x) 2¯ + (∂u'∂z + ∂w'∂x) 2¯ + (∂v'∂z + ∂w'∂y) 2¯) dVE32

с результатами для турбулентного поле потока из уравнений RANS, dgS˙C¯ и dgS˙D¯ может быть определено, но не dgS˙C 'и dgS˙D'.Для этих условий необходимы модели турбулентности, как, например, в [12].

5.3. Безразмерные параметры

Когда необходимо оценить весь процесс конвективной теплопередачи (включая потери эксергии в температуре и в поле течения), это опять же следует делать с помощью безразмерных параметров. Введены безразмерные параметры:

  • Число Нуссельта Nu / экв. (13), что указывает на силу теплопередачи по сравнению с ее необратимостью;

  • Число девальвации энергии Ni / экв.(11), что указывает на потерю энтропийного потенциала переданной энергии;

  • Коэффициент потери напора K / таблица 1, указывающая скорость рассеяния в поле потока;

  • Число разрушения эксергии NE / экв. (24), что указывает на потерю эксергии в поле течения.

Если теперь представляют интерес общие потери эксергии для процесса конвективной теплопередачи, то это, в основном, сумма эффектов, охватываемых Ni и NE. Однако поскольку оба параметра не обезразмериваются одинаково, их нельзя просто добавить.E = 0 для процесса, в котором вся эксергия теряется из-за ее преобразования в анергию.

6. Примеры

Будут приведены два примера, в которых параметры, которые были введены выше, будут использоваться для характеристики ситуации теплопередачи. С помощью этих примеров должно стать очевидным, что энтропию и / или ее образование не следует игнорировать, когда процессы теплопередачи рассматриваются в практических промышленных приложениях.

6.1. Полностью разработанная труба потока с теплопередачей

Этот простой пример может проиллюстрировать, насколько важно учитывать генерацию энтропии, которая является ключевым аспектом в девальвационном числе энергии Nia согласно его определению (11).

То, что обычно можно найти в качестве характеристики теплопередачи полностью развитого трубного потока, - это число Нуссельта Nu. Предположим, что Nu = 100, и это происходит на верхнем температурном уровне энергетического цикла, то есть перед турбиной этого устройства преобразования энергии. Предположим также, что эта ситуация теплопередачи с Nu = 100 и тепловым потоком q˙w = 103 Вт / м2 на длине L = 0,1 происходит в двух разных энергетических циклах:

  • Паросиловый цикл (SPC) с водой в качестве рабочего тела и верхнего температурного уровня Tm, u = 900 К.

  • Органический цикл Ренкина (ORC) с аммиаком Nh4 в качестве рабочего тела и верхним температурным уровнем Tm, u = 400 К.

Когда в обоих циклах Nu, q˙wand Lare одинаковы, разница температур ΔTin Nuaccording к эк. (13) для аммиака в 2,6 раза больше, чем для воды. Это связано с разными значениями теплопроводности k воды (при Tm, u = 900 K и p = 250 бар) и аммиака (при Tm, u = 400 K и p = 25 бар), принимая типичные значения для температуры и давления уровни в обоих циклах.

Для дальнейшего сравнения обратите внимание, что число обесценения энергии согласно ур. (11) в этом случае с dgS˙ согласно ур. (3) и проинтегрированы для получения

S˙g, i = Q˙w, i (1Tw − 1Tm, u) ≈Q˙w, i ΔTTm, u2E35

с E˙ = Q˙wis

В таблице 2 показаны значения число девальвации энергии Ни для обоих случаев в соответствии с этим приближением. Он показывает, что только 0,37% энтропийного потенциала используется для теплопередачи в случае SPC, но почти 5% в случае ORC, «хотя» обе ситуации теплопередачи имеют одинаковое число Нуссельта Nu = 100 и одинаковое количество энергия передается.Обратите внимание, что только та часть энтропийного потенциала, которая еще не используется, доступна для дальнейшего использования после рассматриваемого процесса.

Цикл / жидкость кВт / м · К T∞K Tm, uK ΔTK SPC
300 900 10 0,0037
ORC / аммиак 0.038 300 400 26 0,049

Таблица 2.

Теплопередача при Nu = 100, q˙w = 103 Втм2, L = 0,1 мин, два разных цикла мощности

6.2. Использование CFD для оценки теплообменника

В предыдущем примере были рассмотрены два аналогичных процесса при двух разных уровнях температуры. Такой поток в трубе с теплопередачей является частью ситуации теплопередачи, показанной на рисунке 1: холодная сторона (b) нагревается.

Во втором примере вычислительная гидродинамика (CFD) используется для оценки нагрева жидкости в канале пластинчатого теплообменника, пытаясь найти наилучшую точку работы устройства.Сначала мы опишем устройство и его моделирование, а затем обсудим результаты и способы их использования. Более подробную информацию можно найти в [14].

6.2.1. Геометрия устройства

Пластинчатые теплообменники состоят из гофрированных пластин, которые расположены в стопке пластин, образующих каналы между пластинами. Пластины сконструированы таким образом, что две жидкости отделяются друг от друга по пути через соседние каналы.

В зависимости от гофры пластины каналы имеют постоянно меняющееся сечение, но имеет повторяющийся геометрический рисунок.и период Λ; c.f. [15]

6.2.2. Моделирование устройства

Первое упрощение, сделанное для облегчения моделирования, состоит в том, что пластина (и, следовательно, теплообменник) предполагается иметь бесконечную длину. Таким образом, можно пренебречь воздействием на поток, вызываемым областями входа или выхода: поток развивается гидравлически. Это имеет два последствия:

  • канал можно смоделировать как бесконечно повторяющуюся полосу конечной длины, см. Рисунок 3 (a),

  • , только половина канала должна быть смоделирована, см. Рисунок 3 (b).

Полученная геометрия домена показана на рисунке 4.

Рисунок 3.

Упрощенная геометрия теплообменника: (а) симметричная полоса; (б) область решения из-за предположения симметрии.

Рис. 4.

- вид полосы смоделированного пластинчатого теплообменника.

Второе упрощение состоит в том, что теплообменник работает со сбалансированным противотоком: производительность m˙cp одинакова на горячей и холодной стороне, так что разница температур между ними, а также flux q˙ware одинаков во всех точках между входом и выходом.

6.2.3. Граничные условия

На основе предположений, сделанных выше, периодические граничные условия могут применяться к полю потока в основном направлении потока x (см. Рисунок 3). Граничное условие, применяемое по отношению к полю давления, представляет собой так называемое граничное условие «вентилятора», которое устанавливает постоянный перепад давления между впускным и выпускным участками. В плоскости симметрии накладывается граничное условие симметрии, а граничные условия прилипания выполняются на всех стенках.

Рисунок 5.

Общая скорость генерации энтропии S˙g, скорость генерации энтропии из-за диссипации S˙g, D и скорость генерации энтропии из-за проводимости S˙g, C (нормализованная с минимальной скоростью генерации энтропии при Re≈2000) при различных числах Рейнольдса , для моделирования прохода теплообменника.

Температурное поле имеет граничное условие вентилятора с положительной разностью температур ΔTio между впускным и выпускным участками. Это приводит к нагреванию жидкости, когда она проходит через симулированный проход.Граничное условие, используемое для верхней и нижней стенок, - это линейно возрастающий температурный профиль в среднем направлении потока. Увеличение температуры ΔTω, io совпадает с ΔTio. Вместе эти два граничных условия моделируют уравновешенную противоточную конфигурацию теплообменника. Граничное условие нулевого градиента используется для прокладки, которая моделируется как адиабатическая стенка.

Изменение перепада давления приводит к разной средней скорости потока. Чтобы сохранить постоянный тепловой поток q˙w, необходимо было соответствующим образом отрегулировать разницу температур между входом и выходом (ΔTw, io = ΔTio = q˙wA / m˙cp).

6.2.4. Результаты моделирования

Результаты, полученные в результате моделирования CFD, дают доступ к полям скорости, давления и температуры u, p и T. Их можно использовать для расчета коэффициента теплопередачи и коэффициента потери напора для рассматриваемой конвективной теплопередачи.

Расчет полей давления и скорости - дорогостоящая часть моделирования. Когда предполагается, что все свойства жидкости постоянны, т.е. не зависят от давления и температуры, температурное поле можно даже смоделировать как пассивный скаляр, что требует очень небольших вычислительных затрат.Четыре части генерации энтропии (S˙g, C¯, S˙g, C ', S˙g, D¯, S˙g, D', см. Уравнения (29) - (32) в разделе 5.2. ) являются величинами постобработки: их можно получить из u-, p- и T-полей без решения дополнительных дифференциальных уравнений. Это полезно для оценки определенного процесса, работающего на разных уровнях температуры.

Скорость образования энтропии из-за рассеяния, проводимости и их сумма показаны на рисунке 5 для различных чисел Рейнольдса. Для увеличения числа Рейнольдса S˙g, Din уменьшается, а S˙g, C уменьшается.Оптимальная точка работы может быть определена примерно при Re = 2000. Такой же оптимум можно определить на рисунке 6 для числа девальвации энергии теплообменника Nhe, поскольку в уравнении. (11) тепловой поток, площадь стенки и температура окружающей среды одинаковы для всех расчетов.

Рис. 6.

Число девальвации энергии Nhe для смоделированного прохода пластинчатого теплообменника.

Обратите внимание, что кривые для S˙g, Cand S˙g, Din на рис. 5 являются почти прямыми линиями, особенно для более высоких чисел Рейнольдса.Следовательно, необходимы только два моделирования, чтобы приблизительно оценить оптимальную точку работы. Из двух прямых линий для S˙g, Cand S˙g, D сумма обоих результатов в виде кривой с минимумом при оптимальном числе Рейнольдса.

Как упоминалось ранее, генерация энтропии - это величина постобработки. Это может быть использовано для оценки смоделированной ситуации теплопередачи при различных уровнях температуры. Если общее изменение температуры между входом и выходом не слишком велико, можно сделать приближение, просто соответствующим образом масштабируя результаты.Генерация энтропии из-за диссипации S˙g, D, new на уровне температуры Tnewis (по сравнению с генерацией энтропии в существующем результате моделирования) S˙g, D, new / S˙g, D, sim = Tsim / Tnew. Если новый уровень температуры выше, S˙g, D, new будет меньше, чем S˙g, D, sim. Точно так же для генерации энтропии за счет проводимости соотношение S˙g, C, new / S˙g, C, sim = (Tsim / Tnew) 2. Опять же, если новый уровень температуры выше, S˙g, C, new будет меньше, чем S˙g, C, sim. Оптимальная точка работы смещается к более низкому числу Рейнольдса (см. Рисунок 7), потому что влияние изменения уровня температуры на S˙g, C больше, чем влияние на S˙g, D.

Рис. 7.

Скорость генерации энтропии для теплопередачи при различных уровнях температуры. При более высоких температурах оптимальная рабочая точка смещается в сторону более низких чисел Рейнольдса.

7. Выводы

Несмотря на очевидную низкую популярность, генерация энтропии является важным аспектом любого процесса теплопередачи. Каждый реальный технический процесс включает в себя генерацию энтропии, которую в какой-то момент нужно выпустить в окружающую среду. Было показано, что каждый поток энергии имеет энтропийный потенциал, который представляет собой количество энтропии, которое может быть выброшено в окружающую среду вместе с потоком энергии.Поэтому он устанавливает предел для всех необходимых процессов, связанных с этим потоком энергии. На основании этого было введено число девальвации энергии , которое количественно определяет часть энтропийного потенциала, которая теряется в процессе передачи. Число девальвации энергии применимо ко всем процессам, в которых передается энергия, и рекомендуется для их оценки, особенно в отношении устойчивости.

На примерах также было показано, как различные ситуации теплопередачи можно сравнивать друг с другом.Такие сравнения могут проводиться на самых разных уровнях, начиная от оценки системы (т. Е. Для сравнения различных систем) и заканчивая более детальными исследованиями, касающимися оптимизации подсистем, которые являются частью общей системы теплопередачи. Также было показано, как существующие результаты моделирования могут быть повторно использованы при различных уровнях температуры, эффективно снижая стоимость моделирования CFD.

.

МОНТАЖ И МОНТАЖ ТЕПЛОВОГО ПОЛА СВОИМИ РУКАМИ. ДРУГИЕ СПОСОБЫ ИСПОЛЬЗОВАНИЯ СИСТЕМ ОТОПЛЕНИЯ. | | Своими руками

Но также с помощью его установки можно добавить комфорта и снаружи.

Основным элементом любой системы электрического отопления является, конечно же, нагревательный электрический кабель. Эти кабели делятся на две отдельные группы - с постоянной мощностью (резистивные) и саморегулирующиеся с переменной мощностью.

СОПРОТИВЛЕНИЕ ЭЛЕКТРОКАБЕЛЯ

Их работа основана на принципе нагрева проводника, по которому проходит само электричество.

Нагревательный провод с постоянным сопротивлением находится в теплоизоляции для защиты от механических повреждений, а также для пожарной и электробезопасности. Расположенный сверху некоаксиальный экран служит для заземления и слоя внешней влагонепроницаемой изоляции, защищает от механических повреждений и, соответственно, название не допускает попадания влаги. Использование таких кабелей - самый надежный и дешевый способ создать любую систему теплого пола.

При укладке они покрываются бетонной стяжкой и могут быть просто засыпаны песком.Их конструкция позволяет прокладывать их в воздухе и под теплоизоляцией в трубопроводных системах. Главное, что следует учесть, - они никак не должны пересекаться друг с другом.

Используя такие кабели в системах обогрева, используйте терморегулирующее оборудование, которое поддерживает заданную температуру и защищает кабель от чрезмерного нагрева.

САМОРЕГУЛИРУЕМЫЙ КАБЕЛЬ С ПЕРЕМЕННОЙ МОЩНОСТЬЮ

Это совсем другой кабель.

Между двумя натянутыми проволоками находится токопроводящая матрица из углеродсодержащего композитного материала. Он служит основным тепловым элементом в системе. Кабель «завернут» в изолирующую и заземляющую катушку. Электр. сопротивление матрицы в значительной степени зависит от температуры, поэтому на тех участках кабеля, которые наиболее нагреваются, ток уменьшается и выделяется гораздо меньше тепла. Благодаря этому кабелю они не перегреваются. Электромагнитное излучение теплого пола во много раз ниже установленных норм безопасности (иногда даже в несколько тысяч).

Еще один плюс этих кабелей в том, что их отрезки для прокладки могут быть произвольной длины, а наибольшая длина может достигать нескольких сотен метров. Даже если часть углеродной матрицы будет повреждена, остальные продолжат функционировать. Вывести такой кабель может только короткое замыкание между основными проводами. Системы отопления на основе этого дачного кабеля могут продолжать работать долгое время, иногда во много раз превышающее заявленное.

Основное назначение нагревательных кабелей - это, конечно, теплый пол.

Есть несколько его разновидностей.

Обычный теплый пол подразумевает использование резистивного нагревательного кабеля с закладкой теплоизоляции и последующей заливкой бетоном.

Вы можете выбрать установленную мощность и использовать такую ​​систему, как теплый пол, и как основную систему отопления.

Устанавливайте только в том случае, если пол можно «приподнять» на 5-8 сантиметров без ущерба для пространства комнаты.

Тонкий теплый пол без бетонной стяжки монтируется на основе матов с ТЭНами.

Коврики, в том числе самоклеящиеся, с использованием резистивного кабеля изначально предназначались только для ремонта. Поэтому у них небольшая толщина и используется кабель с небольшим сечением. Впоследствии коврики стали довольно популярными в строительстве с нуля.

Хорошо подходят для укладки в помещениях нестандартной и сложной геометрии. Высота пола при их использовании будет увеличиваться только на толщину плиточного клея и, соответственно, самой плитки - то есть на 1-3 сантиметра.С помощью матов возможны только полы с подогревом.

Для теплого пола изготавливают специальные кабели.

Они не перегреваются, даже если на них настелено ковровое покрытие или ковровое покрытие.

Такие полы вполне могут обходиться без терморегулятора, для экономии электроэнергии лучше использовать.

Для повышения эффективности работы существуют специальные энергоэффективные теплоизоляционные панели, покрытые слоем алюминиевой фольги или тонким слоем металла, и они «продаются» за кабели с необходимым шагом.

Такие панели не будут отдавать тепло, потраченное на обогрев плит пола в доме, а значит, сэкономят вам электроэнергию.

Благодаря высокой теплопроводности алюминия они равномерно распределяют тепло по площади пола.

Саморегулирующийся кабель можно прокладывать под керам. плитка, камень, а также дерево для паркета и ламината и под паркетную доску. Наиболее ощутимо ощущается эффект от теплого пола после его укладки под ламинат .

ОТОПИТЕЛЬНЫЕ ДОРОГИ И ОТКРЫТЫЕ ЗОНА

Перед тем, как принять «предустановочные» расчеты , узнайте максимальную мощность электроэнергии, выделяемую на вашем участке.

Если у вас есть хоть какое-то количество лишних киловатт, вы можете взять на себя монтаж конструкции.

Для того, чтобы система работала эффективно, придется прокладывать от 250 до 400 Вт / м2. Для более дешевой и бюджетной системы можно использовать резистивный кабель. В основании разместите нагревательный кабель ступенями, которые соответствуют необходимой мощности, или уже подобранный мат, равный по ширине усредненной колее автомобиля.Термостат с датчиками температуры и влажности поможет обеспечить наилучшую работу системы. Поверх бетона с проложенным греющим кабелем также можно положить слой асфальта. Если стяжки из бетона нет, то для асфальтового покрытия есть специальная. нагревательный кабель постоянного сопротивления, который поможет сэкономить кабель при укладке горячего асфальта.

Использование кабеля с регулируемой мощностью обойдется дороже, но при этом проще в установке и более экономично с точки зрения потребления электроэнергии.Эти кабели прокладываются в бетоне или песке.

Поскольку кабели, расположенные на открытом пространстве, подвержены перепадам температуры и ультрафиолетовому излучению, к ним предъявляются повышенные требования по прочности к механическим повреждениям, влагостойкости, возгоранию и электробезопасности. Поэтому используют более прочный и износостойкий утеплитель

.

С помощью кабельной системы обогрева трубопроводы можно обеззараживать, не прибегая к химическим средствам. Просто регулярно повышайте температуру в трубах до + 90 градусов.

Водостоки также можно защитить от обледенения с помощью системы электрического обогрева. Это позволит избежать появления сосулек и пробок в водосточных трубах, это особенно полезно для жителей Юга России, где из-за теплого климата очень часто происходят перепады температур и циклы замораживания / оттаивания.

Система защиты от обледенения, выполненная на основе саморегулирующегося кабеля, наиболее проста в установке и использовании, она очень надежна и работает в любых условиях.

Для этого можно использовать резистивный кабель.В этом случае его использование обойдется, конечно, дешевле, но потребует от вас проведения периодического профилактического обслуживания системы.

Чтобы не приходилось включать и выключать систему защиты от обледенения вручную, включите автоматический термостат с датчиками температуры и влажности, размещенными на крыше дома.

Так как ваша задача не прогреть промерзший трубопровод, чтобы «растопить» его, а защитить от промерзания, нельзя использовать очень дорогие и мощные кабели. Нагревательный кабель можно прокладывать как внутри, так и снаружи трубопровода, в обоих случаях накройте их теплоизоляцией.

Защитите резистивный кабель только снаружи труб, избегая отсутствия пересечений между собой. С помощью саморегулирующегося троса можно не только протянуть его по трубопроводу, но и намотать на трубы, при пересечении по нему он все равно не будет подвержен перегреву. Причем кабель будет больше всего нагреваться там, где температура ниже и есть риск замерзания.

Рассматриваемая система отопления также может использоваться для нагрева воды между котлом и краном.Это даст вам дополнительное удобство при его использовании - ведь открывая краны утром, не нужно ждать теплой воды.

Схема устройства электрического теплого пола

  1. Регулятор температуры
  2. Подключение к сети
  3. Датчик температуры
  4. Керамическая плитка или ламинат
  5. Стяжка
  6. Теплоизоляция
  7. Выравнивающая стяжка для черновой обработки
  8. Фольга
  9. Внахлест
  10. Монтажная пластина
  11. Нагревательный элемент
  12. Муфта

Монтаж (установка) нагревательных матов для теплого пола

1.Раскатайте нагревательный коврик на подготовленном основании.

2. Перед укладкой напольного покрытия проверьте целостность греющего кабеля.

3. Вместо цементной стяжки для укладки нагревательного мата используется плиточный клей.

4. Клей наносится на пол - керамическую плитку.

ИНСТРУМЕНТЫ ДЛЯ МАСТЕРОВ И МАСТЕРОВ, И ТОВАРЫ ДЛЯ ДОМА ОЧЕНЬ ДЕШЕВЫЕ. БЕСПЛАТНАЯ ДОСТАВКА. ЕСТЬ ОТЗЫВЫ.

Ниже другие записи по теме «Как сделать своими руками - домохозяину!»

  • Монтаж теплого пола своими руками в одной из комнат дома (+ фото) Как произвести монтаж теплого пола ...
  • Как самому произвести монтаж водяного теплого пола - Устройство и инструкция Самостоятельная установка водяного теплого пола ...
  • Утепление водопровода - чтобы трубы не промерзли Как лучше утеплить водопровод дальше...
  • Электро змеевик для надстройки своими руками - фото и схема КАК СДЕЛАТЬ УДОБНЫЙ ЗАТЕМНИК ДЛЯ ...
  • Разница в типах циркуляции, нагрева открытый и закрытый РАСПРЕДЕЛЕНИЕ СИСТЕМЫ НАГРЕВА - СОВЕТЫ ...
  • Монтаж водяного теплого пола своими руками от производителя - фото Как сделать монтаж водопровода ...
  • Электроотопление теплицы своими руками - схема Отопление теплицы с помощью электричества...

    Подписывайтесь на обновления в наших группах и делитесь.

    Давай дружить!

  • .

    Смотрите также