Какая длина трубы для теплого пола


укладка и расчет оптимального значения

Прокладка труб обогрева под покрытием пола считается одним из лучших вариантов отопления дома или квартиры. Они потребляют меньше ресурсов для поддержания указанной температуры в комнате, превышают стандартные настенные радиаторы по уровню надежности, равномерно распределяют тепло в помещении, а не создают отдельные «холодные» и «горячие» зоны.

Длина контура водяного теплого пола — важнейший параметр, который необходимо определить до начала монтажных работ. От него зависит будущая мощность системы, уровень нагрева, выбор комплектующих и конструктивных узлов.

Варианты укладки

Строителями используются четыре распространенных схемы укладки труб, каждая из которых лучше подходит для использования в помещении различной формы. От их «рисунка» в немалой степени зависит максимальная длина контура теплого пола. Это:

  • «Змейка». Последовательная укладка, где горячая и холодна линия, идут друг за другом. Подходит для помещений вытянутой формы с разделением на зоны различной температуры.
  • «Двойная змейка». Применяется в прямоугольных комнатах, но без зонирования. Обеспечивает равномерное прогревание площади.
  • «Угловая змейка». Последовательная система для помещения с равной длиной стен и наличием зоны низкого прогревания.
  • «Улитка». Сдвоенная система прокладывания, подходящая для приближенных к квадрату форм комнат без холодных участков.

Выбранный вариант укладки оказывает влияние на максимальную длину водяного пола, потому что меняется количество петель труб и радиус изгиба, который также «съедает» определенный процент материала.

Расчет длины

Максимальная длина трубы теплого пола для каждого контура рассчитывается отдельно. Чтобы получить необходимое значение понадобится следующая формула:

Ш*(Д/Шу)+Шу*2*(Д/3)+К*2

Значения указываются в метрах и означают следующее:

  • Ш — ширина комнаты.
  • Д — длина помещения.
  • Шу — «шаг укладки» (расстояние между петлями).
  • К — расстояние от коллектора до точки соединения с контурами.

Полученная в результате вычислений длина контура теплого пола дополнительно увеличивается на 5%, куда входит небольшой запас на нивелирование ошибок, изменение радиуса сгибания трубы и соединение с фитингами.

В качестве примера расчета максимальной длины трубы для теплого пола на 1 контур возьмем помещение в 18 м2 со сторонами в 6 и 3 м. Расстояние до коллектора составляет 4 м, а шаг укладки 20 см, получается следующее:

3*(6/0,2)+0,2*2*(6/3)+4*2=98,8

К результату добавляется 5%, что составляет 4,94 м и рекомендуемая длина контура водяного теплого пола увеличивается до 103,74 м, которые округляются до 104 м.

Зависимость от диаметра труб

Второй по важности характеристикой является диаметр используемой трубы. Она напрямую влияет на максимальное значение длины, количество контуров в помещении и мощность насоса, который отвечает за циркуляцию теплоносителя.

В квартирах и домах со средним размером комнат используются трубы 16, 18 или 20 мм. Оптимальным для жилых помещений является первое значение, оно сбалансировано в плане затрат и производительности. Максимальная длина контура водяного теплого пола 16 трубой составляет 90-100 м в зависимости от выбора материала трубы. Превышать этот показатель не рекомендуется, потому что может образоваться так называемый эффект «запертой петли», когда, вне зависимости от мощности насоса движение теплоносителя в коммуникации прекращается из-за высокого сопротивления жидкости.

Чтобы выбрать оптимальное решение и учесть все нюансы, лучше обратиться к нашему специалисту за консультацией.

Количество контуров и мощность

Монтаж системы отопления должен соответствовать следующим рекомендациям:

  • Одна петля на помещение небольшой площади или часть большого, растягивать контур на несколько комнат нерационально.
  • Один насос на коллектор, даже если заявленной мощности достаточно на обеспечение двух «гребенок».
  • При максимальной длине трубы теплого пола 16 мм в 100 м коллектор устанавливается не более чем на 9 петель.

Если максимальная длина петли теплого пола 16 трубы превышает рекомендованное значение, то помещение разбивается на отдельные контуры, которые соединяются в одну отопительную сеть коллектором. Чтобы обеспечить равномерное распределение теплоносителя по всей системе, специалисты советуют не превышать разницу между отдельными петлями в 15 м, иначе меньший контур прогреется гораздо сильнее, чем больший.

Но что делать, если длина контура теплого пола 16 мм трубы различается на значение, которое превышает 15м? Поможет балансировочная арматура, которая изменяет циркулирующее по каждой петле количество теплоносителя. С ее помощью разница длин может составлять почти два раза.

Температура в комнатах

Также длина контуров теплого пола для 16 трубы оказывает влияние на уровень нагрева. Для поддержания комфортной среды в помещении нужна определенная температура. Для этого прокачиваемая в системе вода нагревается до 55-60 °C. Превышение этого показателя может пагубно сказаться на целостности материала инженерных коммуникаций. В зависимости от назначения комнаты в среднем получаем:

  • 27-29 °C для жилых комнат;
  • 34-35 °C в коридорах, прихожих и проходных помещениях;
  • 32-33 °C в комнатах с повышенной влажностью.

В соответствии с максимальной длиной контура теплого пола 16 мм в 90-100 м разница на «входе» и «выходе» смесительного котла не должна превышать 5 °C, иное значение свидетельствует о теплопотере на отопительной магистрали.

Трубы Общие - Типы Длины и Концы труб

Типы, длины и концы труб

Производство труб - это производство отдельных частей трубы на трубном заводе; это не относится к тому, как части соединяются в поле, чтобы сформировать непрерывный трубопровод. Каждый кусок трубы, произведенный на трубном заводе, называется стыком или отрезком (независимо от его измеренной длины). В некоторых случаях труба доставляется на строительную площадку трубопровода в виде «двойных стыков», когда два куска трубы предварительно свариваются друг с другом для экономии времени.Большая часть труб, используемых для нефте- и газопроводов, является бесшовной или прямошовной, хотя спирально-сварные трубы обычно используются для труб большего диаметра.

Трубы стальные выпускаются в 4-х вариантах

  1. Пила прямошовная
  2. Спирально-сварной
  3. Электросварка сопротивлением (ВПВ)
  4. Бесшовные

Труба сварная

Сварная труба (труба, изготовленная сварным швом) - это трубчатое изделие, изготовленное из плоских пластин, известных как skelp, которые формуются, сгибаются и подготовлены для сварки.Самый популярный процесс для труб большого диаметра - это сварка продольным швом.

Спирально-сварная труба - это альтернативный процесс, спиральная сварная конструкция позволяет изготавливать трубы большого диаметра из более узких пластин или скелпа. Дефекты, которые возникают в спирально сварной трубе, в основном связаны со сварным швом под флюсом и аналогичны по своей природе дефектам для трубы с продольной сваркой под флюсом.

Труба, сваренная сопротивлением (ВПВ) и сваркой с помощью высокочастотной индукции (ВЧИ), изначально этот тип трубы, которая содержит твердофазный стыковой шов, была произведена с использованием нагрева сопротивлением для изготовления продольного шва (ВПВ).Но большинство трубных заводов теперь используют высокочастотный индукционный нагрев (HFI) для лучшего контроля и стабильности. Тем не менее, этот продукт по-прежнему часто называют трубой для ВПВ, хотя сварной шов мог быть произведен с помощью процесса HFI.

Производство бесшовных трубных пробок

Этот процесс используется для изготовления бесшовных труб больших размеров, обычно диаметром от 6 до 16 дюймов (от 150 до 400 мм). Стальной слиток весом до двух тонн нагревается до 2370 ° F (1300 ° C) и протыкается. Отверстие в полой оболочке увеличивается на роторном удлинителе, в результате получается короткая толстостенная трубка, известная как блюм.

Затем через блюм проталкивается внутренняя пробка примерно того же диаметра, что и конечный диаметр трубы. Затем блюм, содержащий пробку, пропускают между валками пробковой мельницы. Вращение валков уменьшает толщину стенки. Трубка поворачивается на 90 ° при каждом проходе через пробковую мельницу для обеспечения круглости. Затем труба проходит через намоточный стан и редукционный стан для выравнивания толщины стенки и получения готовых размеров. Затем труба разрезается на необходимую длину перед термообработкой, окончательной правкой, осмотром и гидростатическими испытаниями.

Производство бесшовных труб на оправке

Этот процесс используется для изготовления бесшовных труб меньшего размера, обычно диаметром от 1 до 6 дюймов (от 25 до 150 мм). Слиток стали нагревают до 2370 ° F (1300 ° C) и протыкают. Оправка вставляется в трубу, и сборка пропускается через прокатный (оправочный) стан. В отличие от пробкового стана, оправочный стан непрерывно уменьшает толщину стенок с помощью серии пар изогнутых роликов, установленных под углом 90 ° друг к другу. После повторного нагрева труба пропускается через многоклетьевой редукционный стан для уменьшения диаметра до конечного диаметра.Затем труба разрезается на необходимую длину перед термообработкой, окончательной правкой, осмотром и гидростатическими испытаниями.

Процесс экструзии бесшовных труб

Этот процесс используется только для труб малого диаметра. Пруток разрезается по длине и нагревается до 2280 ° F (1250 ° C) перед калибровкой и удалением окалины. Затем заготовку экструдируют через стальную головку. После экструзии конечные размеры трубы и качество поверхности достигаются на многорядном редукционном стане.

Труба, сваренная сопротивлением сопротивлению (ERW) и высокочастотной индукционной сваркой (HFI)

Первоначально этот тип трубы, который содержит твердофазный стыковой шов, производился с использованием нагрева сопротивлением для изготовления продольного шва (ERW), но большинство трубных заводов теперь используют высокочастотный индукционный нагрев (HFI) для лучшего контроля и согласованности.Тем не менее, этот продукт по-прежнему часто называют трубой для ВПВ, хотя сварной шов мог быть произведен с помощью процесса HFI.

Дефекты, которые могут возникать в трубах ERW / HFI, связаны с производством полосы, например, расслоение и дефекты на узкой линии сварки. Недостаток плавления из-за недостаточного нагрева и давления является основным дефектом, хотя трещины в виде крючков также могут образовываться из-за переориентации неметаллических включений на границе сварного шва. Поскольку линия сварки не видна после обрезки, а также характер процесса твердофазной сварки, могут быть получены значительные длины сварного шва с плохим сплавлением, если параметры сварки выходят за установленные пределы.Кроме того, первая труба ERW подвергалась реверсированию давления, что приводило к отказу в эксплуатации при более низком напряжении, чем наблюдаемое при испытании под давлением перед эксплуатацией. Эта проблема вызвана ростом трещины во время периода выдержки при испытании под давлением, что в случае ранних труб с ВПВ было связано с сочетанием низкой ударной вязкости линии шва и отсутствия дефектов плавления.

Примечание об отсутствии проплавления при сварке ВПВ

В результате этих ранних проблем труба ERW обычно рассматривалась как труба второго сорта, подходящая только для применений с низким давлением.Однако из-за нехватки бесшовных труб и более низкой стоимости труб из ВПВ поставщики и конечные пользователи в 1980-х годах приложили значительные усилия для улучшения качества трубного завода. В частности, было обнаружено, что точное отслеживание линии сварки оборудованием для автоматического ультразвукового контроля имеет решающее значение, поскольку линия сварки может немного поворачиваться, когда труба покидает сварочную станцию. Кроме того, было обнаружено, что стандарт термообработки линии сварного шва, который необходим для обеспечения хорошей ударной вязкости, является важным, и некоторые спецификации требуют локальной термообработки линии сварного шва с использованием индукционных катушек с последующей нормализацией всего тела всей трубы в печь.В результате этих улучшений современные трубы ERW / HFI имеют гораздо лучшие характеристики, чем традиционный продукт, и были приняты рядом операторов для транспортировки газа под высоким давлением.

Текст о типах сварных и бесшовных труб для этой страницы взят из: General Electric Company

Длина труб

Трубопроводы с заводской длиной не отрезаны точно по длине, но обычно поставляются как:

  • Одиночная случайная длина имеет длину около 5-7 метров
  • Двойная произвольная длина имеет длину около 11-13 метров

Доступны более короткие и более длинные длины, но для расчетов целесообразно использовать эти стандартные длины; другие размеры, вероятно, дороже.

Концы труб

Для концов труб доступны 3 стандартные версии.

  1. Плоские концы (PE)
  2. Концы с резьбой (TE)
  3. Концы со скошенной кромкой (BE)

Трубы PE обычно используются для трубопроводных систем меньшего диаметра и в сочетании с накладными фланцами и фитингами и фланцами для приварки враструб.

Реализация TE говорит сама за себя, эта производительность обычно используется для систем труб малого диаметра, а соединения будут выполняться с помощью фланцев с резьбой и резьбовых фитингов.

Реализация BE применяется ко всем диаметрам сварных встык фланцев или фитингов, приваренных встык, и привариваются напрямую (с небольшим зазором 3-4 мм) друг к другу или к трубе. Концы в большинстве случаев имеют фаску под углом 30 ° (+ 5 ° / -0 °) с поверхностью основания 1,6 мм (± 0,8 мм).

.

Класс трубы и спецификации труб - о трубах должен знать инженер

Перейти к содержанию
  • На главную
  • ТрубопроводыРазвернуть / Свернуть
    • ТрубопроводРазвернуть / Свернуть
      • Направляющая
      • Размеры труб и график
      • Таблицы цветов
      • 9000
      • Производство бесшовных и сварных труб
      • Осмотр труб
    • ФитингиРазвернуть / Свернуть
      • Руководство по трубопроводным фитингам
      • Производство трубных фитингов
      • Размеры и материалы трубных фитингов
      • Осмотр трубных фитингов - Визуальные и испытания
      • - И 45 градусов
      • Размеры отводов и возвратных труб
      • Размеры тройника
      • Размеры редуктора
      • Размеры заглушки
      • Размеры трубной муфты
    • Фланцы
    • Расширение / сгибание
      • Направляющая для фланцев
      • Фланец с удлиненной шейкой
      • 9000 3 Номинальные характеристики фланца
      • Размеры фланца приварной шейки
      • Размеры фланца RTJ
      • Размеры фланца внахлест
      • Размеры фланца с длинной приварной шейкой
      • Размеры фланца приварной внахлест
      • Размеры фланца скольжения
      • Размеры фланца заглушки
      • Размеры фланца
    • Клапаны Развернуть / Свернуть
        Направляющая
      • Клапаны
      • Детали клапана и трим клапана
      • Задвижка
      • Шаровой клапан
      • Шаровой клапан
      • Обратный клапан
      • Дроссельный клапан
      • Пробковый клапан
      • Клапан сброса давления
    • Материал трубы Расширение / сжатие
      • Направляющая материала трубы
      • Углеродистая сталь
      • Легированная сталь
      • Нержавеющая сталь
      • Цветные материалы
      • Неметаллические
      • ASTM A53 04
      • ОлецЭксп и / свернуть
        • Направляющая
        • Втулка и размеры
        • Втулка и размеры
        • Резьба и размеры
        • Латролет и размеры
        • Эльболет и размеры
      • Шпилька и размеры
    • Направляющая шпильки
    • Процедура затяжки болта
    • Направляющая болта
    • Таблица болтов фланца
    • Размеры толстой шестигранной гайки
  • Прокладки и жалюзи для очков Развернуть / Свернуть
    • Направляющая прокладок
    • Спирально-навитая прокладка
    • Размеры спирально-навитой прокладки
    • Прокладка
    • и размер
    • Spectac4 Размеры слепых очков
  • P & IDExpand / Collapse
    • Как читать P&ID
    • Схема технологического процесса
    • Символы P&ID и PFD
    • Символы клапана
  • Collapse
  • l Работа насоса и типы
  • Сосуд под давлениемРазвернуть / свернуть
    • Скоро
  • Курсы
  • ВидеоРазвернуть / свернуть
    • Видеоуроки
    • हिंदी0002
    • /
    • Свяжитесь с
    • Политики
    • Запрос на продукт
  • HardHat Engineer HardHat Engineer Search Искать:
    • Дом
    • Трубопровод
      • Трубопровод
        • Руководство по трубам
        • Размеры труб и график
        • График
        • Таблица
        • Производство бесшовных и сварных труб
        • Осмотр труб
      • Фитинги
        • Руководство по трубопроводным фитингам
        • Производство трубных фитингов
        • Размеры и материалы трубных фитингов
        • Осмотр трубных фитингов - Визуальные и испытания
        • Размеры отводов - 90 & 45 градусов
        • Размеры трубных колен и обратного канала
        • Размеры тройника
        • Размеры трубного редуктора
        • Размеры заглушки
        • Размеры трубной муфты
      • Фланцы
        • Направляющая фланца
        • Фланец
        • Фланец с приварной шейкой 9000
        • Размеры фланца приварной шейки
        • Размеры фланца RTJ
        • Размеры фланца для соединения внахлест
        • Размеры фланца с удлиненной приварной шейкой
        • Размеры фланца приварной втулки
        • Размеры фланца для проскальзывания
        • Размеры глухого фланца
        • Размеры фланца
        • 21
        • Размеры фланца
        • 21 Клапаны
      .

      Трубы и трубки - температурное расширение

      Температурное расширение труб зависит от начальной и конечной температуры трубы, а также от коэффициента расширения материала трубопровода при фактической температуре. Формула расширения может быть выражена как:

      dl = α L o dt (1)

      , где

      dl = расширение (м, дюймы)

      L o = длина трубы (м, дюймы)

      dt = разница температур ( o C, o F)

      α = коэффициент линейного расширения (м / м o K, дюйм / дюйм o F)

      Обратите внимание, что средний коэффициент расширения может изменяться в зависимости от температуры:

      Формула (1) также может использоваться с единицами СИ.Коэффициент расширения должен быть отрегулирован до o C.

      Пример - тепловое расширение трубы из легированной стали

      Труба из легированной стали длиной 100 футов нагревается от 32 до 212 o F . Коэффициент расширения составляет 8 10 -6 (дюйм / дюйм o F) .

      Расширение трубы можно рассчитать как:

      dl = (8 10 -6 дюймов / дюйм o F) (100 футов) (12 дюймов / фут) ((212 o F) - (32 o F))

      = 1.728 дюймов

      .

      Как определить подходящий размер трубы для распределения воды в зданиях?

      Трубы для распределения воды в здании доступны в различных размерах. Обсуждается определение подходящих размеров труб для различных целей в здании на основе различных факторов, таких как стоимость, давление и т. Д.

      Обсуждаются следующие вопросы, касающиеся размеров труб в зданиях:

      • Какие факторы влияют на выбор размера водораспределительной трубы в зданиях?
      • Процедуры, используемые для определения размеров труб для распределения воды в зданиях

      Фиг.1. Трубы разных размеров для распределения воды в зданиях

      Факторы, влияющие на выбор размера водораспределительной трубы в зданиях

      • Экономическая эффективность
      • Давление у источника водоснабжения
      • Требуемое давление на каждой выпускной арматуре (примерами выпускной арматуры являются ванны, сливные каналы, биде, питьевые фонтанчики, кухонные раковины, раковины для ванных комнат, душевые кабины и др.)
      • Падение давления на выходах, размещенных над источником воды.Потеря давления обычно вызывается трением воды. Трение возникает из-за потока воды в трубах, расходомере воды и предохранителе обратного потока.
      • Ограничение скорости потока воды во избежание шума и эрозии труб.
      • Дополнительная мощность с возможностью расширения в будущем. Как правило, дополнительная мощность составляет около 10 процентов.
      • Экономические соображения во многом определяют процесс отбора. Но другие факторы, описанные выше, могут потребовать использования труб определенного размера, кроме самых экономичных.

      Порядок определения размеров труб для распределения воды в зданиях

      • Нарисуйте все предлагаемые горизонтальные магистрали, стояки и ответвления с необходимой информацией, включая типы и количество приспособлений и необходимый поток.
      • Рассчитайте требуемый вес приспособлений, используя таблицы 1 и 2.
      • Укажите потребность в воде в галлонах на миллиметр, используя рисунки 2 и 3, а также общее количество приспособлений.
      • Оцените эквивалентную длину трубы для каждой трубы в системе.Этот шаг следует начинать с главной улицы.
      • Определите среднее минимальное давление в магистрали. Его можно получить в компании по водоснабжению или провести тест.
      • Укажите минимальное давление, необходимое для самого высокого крепления
      • Рассчитайте потерю давления в трубопроводах, используя вычисленную эквивалентную длину трубы.
      • Наконец, выберите размер трубы, используя рисунок 4.

      Примечание:

      • Размеры блоков, указанные в таблицах 1 и 2, указаны в мм, а размер труб в таблице указан в дюймах.1 дюйм = 25,4 мм, 1 фут = 304,8 мм, 1 галлон / м = 3,785 л / м.
      • Скорость воды на седле клапана не должна превышать 2,438 м / с, чтобы предотвратить шум и эрозию. Таким образом, площадь трубы должна быть как минимум равна расходу воды, разделенному на восемь.
      • Размеры подводящих трубопроводов арматуры, указанные в таблицах 1 и 2, являются минимальными.

      Таблица-1: Присоединительные элементы, сифоны и размеры соединений для сантехнических приборов для бытового водоснабжения

      Типы приспособлений Бытовая вода
      Стоимость приспособления как коэффициенты нагрузки Минимальный размер присоединений, мм
      Частный Общественный Горячая вода Холодная вода
      Ванна (с верхним душем или без него 2 4 12.7 12,7
      Биде
      Мойка комбинированная с подносом 3 12,7 12,7
      Комбинированный модуль и поднос с устройством для утилизации пищевых продуктов 4
      Стоматологическая установка 1 9,525
      Стоматологический туалет 1 2 12,7 12.7
      Посудомоечная машина бытовая 2
      Питьевой фонтанчик 1 2 9,525
      Трапы в полу 1
      Кухонная мойка 2 4 12,7 12,7
      Мойка кухонная бытовая с измельчителем пищевых отходов 3
      Туалет 1 19.05 9,525
      Туалет 2 12,7 12,7
      Унитаз, парикмахерская, салон красоты 2
      Туалет хирурга 2
      Поднос для белья (1 или 2 отделения) 2 4 12,7 12,7
      Душ на голову 2 4 12.7 12,7
      Раковины хирурга 3 12,7 12,7
      Раковины Промывочный край (с клапаном) 2 19,05 19,05
      Раковины для обслуживания (стандарт сифона) 3 12,7 12,7
      Раковины для обслуживания (сифон) 2 4 12,7 12,7
      Раковина Горшок, посудомойка, 4
      Писсуар, пьедестал, сифон, продувка 10 25.4
      Писсуар настенный 5 12,7
      Писсуар 5 50,8 19,05
      Писсуар со сливным бачком 3
      Мойка для раковины (круглая или множественная) каждый комплект смесителей 2 12,7 12,7
      Санитарный бак, работающий от бака 3 5 19.05
      Санитарный узел с клапаном 6 10 25,4

      Таблица 2: Крепежные элементы, сифоны и размеры соединений для сантехнической арматуры для дренажа

      Типы приспособлений Дренаж
      Стоимость приспособления как коэффициенты нагрузки Минимальный размер ловушки, мм
      Ванна (с верхним душем или без него 2 38.1
      Биде
      Мойка комбинированная с подносом 2
      Комбинированный модуль и поднос с устройством для утилизации пищевых продуктов 3
      Стоматологическая установка 1 31,75
      Стоматологический туалет 2
      Посудомоечная машина бытовая 2 38,1
      Питьевой фонтанчик 1 31,75
      Трапы в полу 2 50.8
      Кухонная мойка 2 или 3 38,1
      Мойка кухонная бытовая с измельчителем пищевых отходов 2
      Туалет 1 31,75
      Туалет 2 38,1
      Унитаз, парикмахерская, салон красоты 2
      Туалет хирурга 2
      Поднос для белья (1 или 2 отделения) 2
      Душ на голову 2 50.8
      Раковины хирурга 3 38,1
      Раковины Промывочный край (с клапаном) 6 76,2
      Раковины для обслуживания (стандарт сифона) 3
      Раковины для обслуживания (сифон) 3 50,8
      Раковина Горшок, посудомойка, 3 38,1
      Писсуар, пьедестал, сифон, продувка 6 76.2
      Писсуар настенный 2 38,1
      Писсуар 2 50,8
      Писсуар со сливным бачком 2 38,1
      Мойка для раковины (круглая или множественная) каждый комплект смесителей 3
      Санитарный бак, работающий от бака 4 76,2
      Санитарный узел с клапаном 6

      Фиг.2: Кривая потребности в воде для бытового потребления Укажите скорость потока, используя количество обслуживаемых устройств

      Рис.3: Кривая воды для бытового потребления, увеличенная часть для низкого потребления воды

      Рис.4: Определение расхода в медных и других трубах, которые будут сглажены после эксплуатации в течение 15-20 лет

      Подробнее:

      Типы сантехнических труб, используемых в строительстве

      Типы водопроводно-канализационных систем в зданиях

      Типы соединений труб в водопроводной системе

      Типы трубопроводной арматуры различного назначения в водопроводной системе

      Список литературы

      ASPE.Справочник по инженерному проектированию сантехники: Руководство инженера по проектированию и строительству систем. Чикаго: Американское общество инженеров-сантехников, т. I, 2004 г.

      ФРЕДЕРИК С. МЕРРИТТ, ДЖОНАТАН Т. РИКЕТТС. Справочник по проектированию и строительству зданий. 6-е издание. изд. Нью-Йорк: McGRAW-HILL, 2001.

      .

      GESAP, Водоснабжение, 2017. Дата обращения: 30 сентября 2017 г.

      .

      Смотрите также