Какую нагрузку выдерживает профильная труба 20х20


Максимальная нагрузка на профильную трубу: способы расчета

Выбирая профильную трубу, необходимо особое внимание уделять её параметрам и учитывать какую нагрузку выдержит профильная труба.

Эти трубы используются, в качестве каркасов для различных сооружений, поэтому подбирать изделия необходимо максимально ответственно.

Преимущества профильных труб заключается в их:

  • легкости;
  • надежности;
  • устойчивости к нагрузкам;
  • простоте монтажа.

Нагрузка, действующая на профильную трубу

Если планируется изготовить беседку или теплицу, то серьезно задумываться о нагрузках не стоит, так как такие конструкции не подвержены воздействию серьезных сил. А вот если изготавливается навес, козырек, каркас для более серьезного сооружения – то здесь просто необходимы обстоятельные рассчеты.

Профильные трубы устойчивы к деформации, но и у них есть предел. Если нагрузка будет соответствовать норме, то изделие, под действием груза, например, мокрого снега, может согнуться. Если снег удалить, то труба примет свою исходную форму. В том случае, когда допустимая нагрузка превышена, труба не восстановит форму. Это в лучшем случае, в худшем – она просто разорвется.

При выборе профильной трубы, таким образом, необходимо учитывать:
размеры;

  • сечение. Как правило, используются прямоугольные трубы и трубы с квадратным сечением;
  • напряжение каркаса из труб;
  • прочность материала;
  • вероятные нагрузки, которые могут возникнуть в процессе эксплуатации.

Классификация нагрузок

Одним из критериев классификации является время воздействия нагрузок. Виды таких нагрузок установлены СП 20.13330.2011. И они таковы:

  • постоянные. То есть, не меняется ни вес, ни такой показатель, как давление, в течение достаточно долгого времени. Пример постоянной нагрузки: вес и давление элементов здания;
  • временные, но длительные. Например, вес перегородок из ДСП;
  • кратковременные. Это именно о том, о чем шла речь выше: о снеге, ветре и других природных явлениях;
  • особые. Например, нагрузки от взрывов и ударов машин.

Таким образом, если на территории домовладения сооружается навес, то нужно учитывать ряд нагрузок:

  • от снега и ветра;
  • от возможных столкновений с авто.

На территориях, где бывают периодически землетрясения, нельзя не учитывать данный фактор. На таких территориях конструкции должны быть максимально прочными.

Расчетные схемы

Расчетные схемы учитывают не только виды нагрузок, но и то, каким образом нагрузка распределяется по конструкции. Например, опоры могут испытывать более серьезные нагрузки, а поперечные дополнительные элементы – небольшие.

Максимальные нагрузки

Чтобы понять, какие максимальные нагрузки установлены для труб, необходимо изучить следующие таблицы.

Таблица 1. Нагрузка для профильной трубы квадратного сечения

Размеры профиля, мм Максимальная нагрузка, кг с учетом длины пролета
1 метр 2 метра 3 метра 4 метра 5 метров 6 метров
Труба 40х40х2 709 173 72 35 16 5
Труба 40х40х3 949 231 96 46 21 6
Труба 50х50х2 1165 286 120 61 31 14
Труба 50х50х3 1615 396 167 84 43 19
Труба 60х60х2 1714 422 180 93 50 26
Труба 60х60х3 2393 589 250 129 69 35
Труба 80х80х3 4492 1110 478 252 144 82
Труба 100х100х3 7473 1851 803 430 253 152
Труба 100х100х4 9217 2283 990 529 310 185
Труба 120х120х4 13726 3339 1484 801 478 296
Труба 140х140х4 19062 4736 2069 1125 679 429

Таблица 2. Нагрузка для профильной трубы прямоугольного сечения (рассчитывается по большей стороне)

Размеры профиля, мм Максимальная нагрузка, кг с учетом длины пролета
1 метр 2 метра 3 метра 4 метра 5 метров 6 метров
Труба 50х25х2 684 167 69 34 16 6
Труба 60х40х3 1255 308 130 66 35 17
Труба 80х40х2 1911 471 202 105 58 31
Труба 80х40х3 2672 658 281 146 81 43
Труба 80х60х3 3583 884 380 199 112 62
Труба 100х50х4 5489 1357 585 309 176 101
Труба 120х80х3 7854 1947 846 455 269 164

Указаны максимальные нагрузки, в результате которых не произойдет разрыва трубы. Элемент конструкции согнется и, в дальнейшем, не примет изначальной формы. Если же максимальная нагрузка на профильную трубу будет превышена, то тогда уже случится разрыв.

Методы расчета нагрузки

Используются следующие методы:

  • при помощи разработанных таблиц;
  • использование физических формул;
  • расчет при помощи специального калькулятора.

Чтобы рассчитать нагрузку при помощи таблиц, необходимо составить характеристики фактически имеющейся трубы с теми, характеристиками, которые имеются в таблице.
Если расчет нагрузки на профильную трубу ведется при помощи формул, то, в основном, используется такая формула: Ризг= M/W. Изгибающий момент делится на сопротивление.

Существуют и специальные калькуляторы, разработанные специалистами. Однако пользоваться такими калькуляторами можно только в том случае, если они размещены на надежных интернет-сайтах или переданы в пользование компетентными лицами, которые хорошо разбираются в нагрузках на профильные трубы.

Следует подчеркнуть: не стоит делать расчеты самостоятельно. Во-первых, для правильного проведения расчетов, необходимо знать ГОСТы и сопромат. Во-вторых, малейший просчет может привести к серьезным последствиям.

Таким образом, расчет нагрузки на трубы – это очень важная процедура. Пренебрежение ей может повлечь серьезные последствия:

  • разрушение конструкции, здания;
  • наличие пострадавших и жертв.

В новостях, иногда, можно увидеть сюжеты о том, что где-то обрушилась крыша здания или его иные элементы. Такие ситуации, чаще всего, складываются из-за того, что в расчетах были допущены ошибки.

Полное руководство по размерам труб и спецификациям труб - Бесплатная карманная таблица

Номер в спецификации труб - это стандартный метод определения толщины труб, используемых на технологических предприятиях.

Стандартизация кованой стали Спецификация и размеры труб начинаются с эпохи массового производства. В то время доступны трубы только трех размеров: стандартный вес (STD), сверхпрочные (XS) и двойные сверхпрочные (XXS), в зависимости от системы размеров железных труб (IPS).

В связи с модернизацией различных отраслей промышленности и использованием труб с различным давлением и температурой, трех размеров недостаточно для удовлетворения требований.Это приведет к появлению концепции номера спецификации, которая объединяет толщину стенки и диаметр трубы.

В текущей практике размер трубы определяется двумя наборами номеров

  1. Диаметр трубы / номинальный диаметр
  2. Спецификация трубы, которая представляет собой не что иное, как толщину стенки трубы.

Что такое номинальный размер трубы?

Номинальный размер трубы (NPS) - это число, определяющее размер трубы. Например, когда вы говорите «труба 6 дюймов», это означает, что 6 дюймов - это номинальный размер этой трубы.Однако для труб размером NPS 14 и выше Внешний диаметр такой же, как NPS. Чтобы понять эту концепцию, вы должны изучить способ производства труб.

Производство труб от NPS ⅛ (DN 6) до NPS 12 (DN 300) основано на фиксированном наружном диаметре (OD). Таким образом, при увеличении толщины стенки внутренний диаметр (ID) трубы уменьшается. Таким образом, NPS будет где-то посередине между внешним диаметром и внутренним диаметром трубы.

Изготовление трубы с размером NPS 14 (DN350) и выше соответствует номинальному размеру трубы.Приведенный ниже пример дает вам больше ясности в концепции.

Внешний диаметр
дюймов
Внешний диаметр
мм
Толщина
дюймов
Толщина
мм
Внутренний диаметр
дюймов
Внутренний диаметр
мм
Для NPS 2 Schedule 40 труба
2,375 60,3 0,154 3,91 2,067 52,5
Для трубы NPS 14 Schedule 40
14 350 0.438 11,13 13,124 333,3

Из приведенной выше таблицы вы можете видеть, что для NPS 2 внутренний диаметр трубы близок к NPS трубы, а для NPS 14 наружный диаметр трубы такой же, как NPS.

4 ″ сорт трубы sch 80, спецификация

Вы можете легко преобразовать размер из дюйма в мм, умножив его на 25,4 и округлив, как показано ниже;

  1. Внешний диаметр свыше 16 дюймов округлен до ближайшего 1 мм
  2. Внешний диаметр 16 дюймов и менее округлен до ближайшего 0.1 мм
  3. Толщина стенки трубы округлена с точностью до 0,01 мм

Что такое диаметр трубы (номинальное внутреннее отверстие)?

NPS часто называют NB (номинальное отверстие). Таким образом, нет никакой разницы между NB и NPS. NB - это также американский способ обозначения размеров труб. Я также видел, что когда размеры трубы указаны в мм (DN), люди ссылаются на размеры труб в NB. Поэтому, когда кто-то говорит о трубе 25 или 50, в основном, они говорят о DN.

Что такое размер трубы DN (номинальный диаметр)?

DN или номинальный диаметр - это международное обозначение (SI или матричное обозначение), а также европейский эквивалент NPS для обозначения размеров труб.Здесь вы должны отметить, что DN показывает размеры трубы иначе, чем NPS.

2-дюймовая труба обозначается просто как DN 50. Вы можете получить любое значение NPS или DN, умножив его на 25. Для облегчения понимания ознакомьтесь с таблицей ниже. Когда вы используете DN, другие измерения не меняются.

Номинальный размер трубы Номинальный диаметр Номинальный размер трубы Номинальный диаметр
NPS (дюймы) DN (мм) NPS (дюймы) DN (мм)
1/8 6 20 500
1/4 8 22 550
3/8 10 24 600
1/2 15 26 650
3/4 20 28 700
1 25 30 750
1 ¼ 32 32 800
1 ½ 40 36 900
2 50 40 1000
2 ½ 65 42 1050
3 80 44 1100
3 ½ 90 48 1200
4 100 52 1300
5 125 56 1400
6 150 60 1500
8 200 64 1600
10 250 68 1700
12 300 72 1800
14 350 76 1900
16 400 80 2000
18 450 На основе ASME B36.10

Из этой таблицы видно, что сначала размер трубы увеличивается на, чем ½, а затем на 1 дюйм. С 6 дюймов до 42 дюймов, увеличивается на 2 дюйма, а затем на 4 дюйма.

Что такое график трубопроводов?

Спецификация труб - это способ указания толщины стенки трубы. Для упрощения заказа труб комитет ASME разработал номер спецификации, который основан на модифицированной формуле толщины стенки Барлоу.

Определение номера спецификации: Номер спецификации указывает приблизительное значение выражения 1000 x P / S, где P - рабочее давление, а S - допустимое напряжение, оба выражены в фунтах на квадратный дюйм.

Вы можете увидеть формулу расчета спецификации трубопровода, как показано ниже;

Номер спецификации = P / S

  • P - рабочее давление в (фунт / кв. Дюйм)
  • S - допустимое напряжение в (фунт / кв. Дюйм)

Итак, что означает таблица 40?

Таблица 40 - это не что иное, как указатель толщины трубы. Проще говоря, можно сказать, что для данного материала труба сортамента 40 может выдерживать определенное давление.

А теперь скажите, какая труба толще 40 или 80?

Труба сортамента 80 толще трубы сортамента 40.Посмотрите на приведенную выше формулу номера графика, допустимое напряжение материала при данной температуре фиксировано. Это означает, что с увеличением рабочего давления увеличивается номер графика, который является обозначением толщины стенки трубы.

Спецификация труб для труб из нержавеющей стали

Стоимость труб из нержавеющей стали намного выше, чем труб из углеродистой стали. Благодаря свойствам коррозионной стойкости нержавеющей стали, развитию высоколегированной нержавеющей стали и сварке плавлением труб меньшей толщины можно удовлетворительно работать, не опасаясь преждевременного выхода из строя.

Для снижения стоимости материала ASME ввела различные номера графиков для труб и фитингов из нержавеющей стали. В соответствии с ASME B36.19 номер спецификации с суффиксом «S» вводится для трубы из нержавеющей стали. Пример - 10S

Стандартный график труб согласно ASME B36.10 и B36.19

Обратитесь к таблице ниже, в которой суммированы доступные номера графиков для труб из углеродистой и нержавеющей стали на основе ASME B36.10 и B36.19.

Для труб из углеродистой стали и кованого железа согласно ASME B36.10 5, 10, 20, 30, 40, 60, 80, 100, 120, 140, 160, STD, XS, XXS
Для труб из нержавеющей стали согласно ASME B36.19 5S, 10S, 40S, 80S

Обратите внимание на следующее;

  • STD (стандартный) и Schedule 40 имеют одинаковую толщину до NPS 10 (DN 250)
  • Более NPS 10 STD имеет толщину стенки 3/8 дюйма (9,53 мм)
  • XS имеет ту же толщину, что и Спецификация 80 для номинальных размеров до 8 дюймов (DN 200)
  • Для размеров XS с номинальным размером выше 8 дюймов толщина стенки составляет ½ дюйма.(12,5 мм)

Таблица размеров трубы NPS в дюймах

1/2 4 904 904 904 904 904 904 904 904 900
Таблица номинальных размеров трубы - дюймы
Размер в дюймах OD 5 5s 10 10s 20 30 40 40 с Стандарт 60 80 80 с XS 100 120 140 160 XXS Размер в дюймах
1/8 0.405 0,049 0,049 0,068 0,068 0,068 0,095 0,095 0,095 1/8
1/4
1/4
1/4 0,065 0,065 0,088 0,088 0,088 0,119 0,119 0,119 1/4
3/850
3/850675 0,065 0,065 0,073 0,091 0,091 0,091 0,126 0,126 0,126 3/8
0,84 0,065 0,065 0,083 0,083 0,095 0,109 0,109 0,109 0,147 0.147 0,147 0,188 0,294 1/2
3/4 1,05 0,065 0,065 0,083 0,083 0,095 0,113 0,113 0,113 0,154 0,154 0,154 0,219 0,308 3/4
1 1,315 0.065 0,065 0,109 0,109 0,114 0,133 0,133 0,133 0,179 0,179 0,179 0,25 0,358 1 1/4 1,66 0,065 0,065 0,109 0,109 0,117 0,14 0,14 0,14 0.191 0,191 0,191 0,25 0,382 1 1/4
1 1/2 1,9 0,065 0,065 0,109 0,109 0,125 0,145 0,145 0,145 0,2 0,2 0,2 0,281 0,4 1 1/2
2 2.375 0,065 0,065 0,109 0,109 0,125 0,154 0,154 0,154 0,218 0,218 0,218 0,344 2
2 1/2 2,875 0,083 0,083 0,12 0,12 0,188 0,203 0,203 0.203 0,276 0,276 0,276 0,375 0,552 2 1/2
3 3,5 0,083 0,083 0,12 0,12 0,1 0,216 0,216 0,216 0,3 0,3 0,3 0,438 0,6 3
3 1/2 4 0.083 0,083 0,12 0,12 0,188 0,226 0,226 0,226 0,318 0,318 0,318 0,636 3 1/2 4,5 0,083 0,083 0,12 0,12 0,188 0,237 0,237 0,237 0,337 0.337 0,337 0,438 0,531 0,674 4
5 5,563 0,109 0,109 0,134 0,134 0,258 0,258 0,258 0,258 0,375 0,375 0,375 0,5 0,625 0,75 5
6 6,625 0.109 0,109 0,134 0,134 0,28 0,28 0,28 0,432 0,432 0,432 0,562 0,719 0,864 650
8,625 0,109 0,109 0,148 0,148 0,25 0,277 0,322 0,322 0,322 0.406 0,5 0,5 0,5 0,594 0,719 0,812 0,906 0,875 8
10 10,75 0,134 0,134 0,165 0,165 0,25 0,307 0,365 0,365 0,365 0,5 0,594 0,5 0,5 0,719 0,844 1 1.125 1 10
12 12,75 0,156 0,156 0,18 0,18 0,25 0,33 0,406 0,375 0,375 0,562 0,68850 0,5 0,5 0,844 1 1,125 1,312 1 12
14 14 0,156 0.156 0,25 0,188 0,312 0,375 0,438 0,375 0,375 0,594 0,75 0,5 0,5 0,938 1,094 1,25 1,406 900 1450 904
16 16 0,165 0,165 0,25 0,188 0,312 0,375 0,5 0,375 0.375 0,656 0,844 0,5 0,5 1,031 1,219 1,438 1,594 16
18 18 0,165 0,165 0,25 0,188 0,312 0,438 0,562 0,375 0,375 0,75 0,938 0,5 0,5 1,156 1,375 1.562 1,781 18
20 20 0,188 0,188 0,25 0,218 0,375 0,5 0,594 0,375 0,375 0,812 1,031 900 0,5 0,5 1,281 1,5 1,75 1,969 20
22 22 0,188 0.188 0,25 0,218 0,375 0,5 0,375 0,875 1,125 0,5 1,375 1,625 1,875 2,125 22
24 0,218 0,218 0,25 0,25 0,375 0,562 0,688 0,375 0,375 0.969 1,219 0,5 0,5 1,531 1,812 2,062 2,344 24
26 26 0,312 0,5 0,5
28 28 0,312 0,5 0,625 0.375 0,5
30 30 0,25 0,25 0,312 0,312 0,5 0,625 0,3754 0,505
32 32 0,312 0,5 0,625 0,688 0.375 0,5
34 34 0,312 0,5 0,625 0,688 0,375
36 36 0,312 0,5 0,625 0,75 0,375 0.5
38 38 0,375 0,5
904 9004 9004 0,375 0,5
42 42 0.375 0,5
44 44 0,375 904 904 46 0,375 0,5
48 48 375 0,5
Размер в дюймах OD 5 5s 10 10s 20 30 40 40s 60 80 80s XS 100 120 140 160 XXS Размер в дюймах
ASME B36.10M-2015: Сварные и бесшовные трубы из кованой стали
ASME B36.19M-2004: Труба из нержавеющей стали (для 5S, 10S, 40S и 80S)
Не путайте между номиналом 3 1/2 дюйма и внешним диаметром 3,5 дюйма, номиналом 4 дюйма и внешним диаметром 4 000 дюймов

Таблица размеров трубы NPS в мм

4 101,11 101,11 90 2,11 9008 7
Таблица номинальных размеров трубы - Номинальный размер трубы в миллиметрах (мм)
DN в мм OD 5 5s 10 10s 20 30 40 40s Std 60 80 80s XS 100 120 140 160 XXS DN в мм
6 10.3 1,24 1,24 1,73 1,73 1,73 2,41 2,41 2,41
8
8 1,65 2,24 2,24 2,24 3,02 3,02 3,02
10 17.1 1,65 1,65 1,85 2,31 2,31 2,31 3,2 3,2 3,2
15 1,65 2,11 2,11 2,41 2,77 2,77 2,77 3,73 3,73 3,73 4.78 7,47
20 26,7 1,65 1,65 2,11 2,11 2,41 2,87 2,87 2,87 3,91 3,91 3,91 3,91 3,91 5,56 7,82
25 33,4 1,65 1,65 2,77 2,77 2,9 3.38 3,38 3,38 4,55 4,55 4,55 6,35 9,09
32 42,2 1,65 1,65 2,77 2,75 2,97 3,56 3,56 3,56 4,85 4,85 4,85 6,35 9,7
40 48.3 1,65 1,65 2,77 2,77 3,18 3,68 3,68 3,68 5,08 5,08 5,08 7,14 10,1650 7,14 10,1650 50 60,3 1,65 1,65 2,77 2,77 3,18 3,91 3,91 3,91 5,54 5.54 5,54 8,74 11,07
65 73 2,11 2,11 3,05 3,05 4,78 5,16 5,16 5,16 7,01 7,01 7,01 9,53 14,02
80 88,9 2,11 2,11 3.05 3,05 4,78 5,49 5,49 5,49 7,62 7,62 7,62 11,13 15,24
15,24
3,05 3,05 4,78 5,74 5,74 5,74 8,08 8,08 8,08 16.15
100 114,3 2,11 2,11 3,05 3,05 4,78 6,02 6,02 6,02 8,56 8,56 8,56 8,56 8,56 8,56 13,49 17,12
125 141,3 2,77 2,77 3,4 3,4 6,55 6.55 6,55 9,53 9,53 9,53 12,7 15,88 19,05
150 168,3 2,77 2,77 4 3,477 2,77 4 3,4 7,11 7,11 7,11 10,97 10,97 10,97 14,27 18,26 21,95
200 219.1 2,77 2,77 3,76 3,76 6,35 7,04 8,18 8,18 8,18 10,31 12,7 12,7 12,7 15.09 18.26 23,01 22,23
250 273 3,4 3,4 4,19 4,19 6,35 7,8 9.27 9,27 9,27 12,7 15,09 12,7 12,7 18,26 21,44 25,4 28,58 25,4
300 323,8 3,96 323,8 3,96 4,57 4,57 6,35 8,38 10,31 9,53 9,53 14,27 17,48 12,7 12,7 21.44 25,4 28,58 33,32 25,4
350 355,6 3,96 3,96 6,35 4,78 7,92 9,53 11,13 9,53 9,53 11,13 9,53 9,53 15,09 19,05 12,7 12,7 23,83 27,79 31,75 35,71
400 406.4 4,19 4,19 6,35 4,78 7,92 9,53 12,7 9,53 9,53 16,66 21,44 12,7 12,7 26,196 36,96 40,49
450 457 4,19 4,19 6,35 4,78 7,92 11,13 14.27 9,53 9,53 19,05 23,83 12,7 12,7 29,36 34,93 39,67 45,24
500 508 4,7850 4,7850 5,54 9,53 12,7 15,09 9,53 9,53 20,62 26,19 12,7 12,7 32.54 38,1 44,45 50,01
550 559 4,78 4,78 6,35 5,54 9,53 12,7 ,5 9,53 12,7 34,93 41,28 47,63 53,98
600 610 5,54 5,54 6.35 6,35 9,53 14,27 17,48 9,53 9,53 24,61 30,96 12,7 12,7 38,89 46,02 52,37 59,54
660 7,92 12,7 9,53 12,7
700 711 92 12,7 15,88 9,53 12,7
750 762 6,32 6,35 762 6,32 6,35 12,99 9,9 15,88 9,53 12,7
800 813 7.92 12,7 15,88 17,48 9,53 12,7
850 864 850 864 7,92 864 12.92 9,53 12,7
900 914 7,92 12.7 15,88 19,05 9,53 12,7
950 965 904
1000 1016 9,53 12.7
1050 1067 9,53 12,7 11,7 11,7 9,53 12,7
1150 1168 53 12,7
1200 1219 9,53 9004 9,53 9004 12,74 9004 9004 9004 9004 9004 мм OD 5 5s 10 10s 20 30 40 40s Std 60 80 80s XS 100 120 140 160 XXS DN в мм
ASME B36.10М-2015: Сварные и бесшовные трубы из кованой стали
ASME B36.19M-2004: Трубы из нержавеющей стали (для 5S, 10S, 40S и 80S)

Номинальный диаметр трубы

Номинальный диаметр трубы Размер
дюймов
Номинальный размер трубы
OD, дюйм
DN, мм Номинальный размер трубы
OD, мм
1/8 10,3 6 10,3
1 / 4 13.7 8 13,7
3/8 17,1 10 17,1
1/2 21,3 15 21,3
3/4 26,7 20 26,7
1 33,4 25 33,4
1,25 42,2 32 42,2
1,5 48,3 40 48.3
2 60,3 50 60,3
2,5 73 65 73
3 88,9 80 88,9
3,5 101,6 90 101,6
4 114,3 100 114,3
5 141,3 125 141,3
6 168.3 150 168,3
8 219,1 200 219,1
10 273,1 250 273,1
12 323,8 300 323 323,8 300
14 14 350 355,6
16 16 400 406,4
18 18 450 457
20 20 500 508
22 22 550 559
24 24 600 610
26 26 650 660
28 28 700 711
30 30 750 9 0050 762
32 32 800 813
34 34 850 864
36 36 900 914
38 38 950 965
40 40 1000 1016
42 42 1050 1067
44 44 1100 1118
46 46 1150 1168
48 48 1200 1219

Вы можете рассчитать внутренний диаметр трубы (ID) с помощью параметра Внешний диаметр ( OD) и толщины трубы по формуле, приведенной ниже.

Внутренний диаметр трубы = [Внешний диаметр трубы] - (2 × толщина стенки трубы)]

Допуск размеров для трубы из углеродистой и нержавеющей стали

Общие допуски на размеры перечислены в ASTM A530. Тем не менее, каждый продукт имеет свои собственные требования, и если они указаны в спецификации, они будут применяться к A530.

Описание Размер Свыше Меньше
Вес NPS 12 (DN 300) и меньше 10% 3.50%
Вес NPS 14 (DN 350) и выше (Примечание-1) 10% 5%
Толщина стенки
Бесшовные и сварные трубы 1⁄8 до 2 ½, вкл., Все соотношения т / д (Примечание-2) 20,00% 12,50%
от 3 до 18 включительно, т / д до 5% вкл. 22,50% 12,50%
От 3 до 18 включительно, т / д> 5% 15,00% 12.50%
20 и более, сварные, все соотношения т / д (Примечание 3) 17,50% 12,50%
20 и более, бесшовные, т / д до 5% вкл. 22,50% 12,50%
20 и более, бесшовные, t / D> 5% 15,00% 12,50%
Кованые и расточные трубы 1/8 дюйма (3,2 мм) Нет
Литая труба 1/6 дюйма (1.6 мм) Нет
Внутренний диаметр для литой трубы Нет 1,6 мм (1⁄16 дюйма)
Внешний диаметр (Примечание-4)
Внешний диаметр 1⁄8 до 11⁄2, включая 1⁄64 дюйма (0,4 мм) 1/32 дюйма (0,8 мм)
От 1 ½ до 4, включая 1/32 дюйма (0,8 мм) 1/32 дюйма (0,8 мм)
От 4 до 8, включая 1/16 дюйма (1,6 мм) 1/32 дюйма(0,8 мм)
От 8 до 18, включая 3/32 дюйма (2,4 мм) 1/32 дюйма (0,8 мм)
От 18 до 26, включая 1 / 8 дюймов (3,2 мм) 1/32 дюйма (0,8 мм)
От 26 до 34, включая 5/32 дюйма (4,0 мм) 1/32 дюйма (0,8 мм)
Более 34 3/8 дюйма (4,8 мм) 1/32 дюйма (0,8 мм)
Согласно ASTM A530 / A530M-12 и ASTM A999 / A999M-15
  • Примечание-1: Трубы размером NPS 4 (DN 100) и меньше могут взвешиваться партиями; Трубы размером больше NPS 4 (DN 100) должны взвешиваться отдельно.
  • Примечание-2: t = номинальная толщина стенки. D = Внешний диаметр.
  • Примечание-3: Для сварных труб площадь сварного шва не должна ограничиваться превышением допуска.
  • Примечание-4: Для тонкостенных труб овальность в любом одном поперечном сечении не должна превышать 1,5% указанного наружного диаметра.

Щелкните изображение ниже, чтобы получить диаграмму размеров трубы для печати

Карманная диаграмма в дюймах

Карманная диаграмма

в миллиметрах

Загрузите диаграммы в формате PDF бесплатно

.

труб и цистерн | Проблемы с решениями

Q.1. Трубы M и N, соединенные вместе, могут заполнить цистерну за 6 минут. Если M требуется на 5 минут меньше, чем N для заполнения бачка, то время, за которое только N может заполнить бачок, будет

а) 15 мин

б) 10 мин

в) 30 мин

г) 25 мин

Ответ и объяснение

Sol: опция A
Пояснение: Пусть труба M заполнит бачок за x минут.
Таким образом, труба N заполнит цистерну за (x + 5) минут.
Теперь 1 / x + 1 / (x + 5) = 1/6 → x = 10
Таким образом, труба M может заполниться за 10 минут, поэтому N может заполниться за 10 + 5 = 15 минут.

Q.2. Наполнение бачка из-под крана обычно занимает 10 часов, но из-за одной открытой выпускной трубы это занимает на 5 часов больше. За сколько часов выпускная труба опустошит полную цистерну?

а) 20 часов

б) 24 часа

в) 30 часов

d) Ни один из этих

Ответ и объяснение

Sol: Опция C
Пояснение: Поскольку цистерна заполнена за 10 часов, следовательно, через 1 час, заполненная часть → 1/10
Теперь, из-за выпускной трубы, заполненная часть за 1 час = 1/15 часть
Часть бачка опорожнено из-за утечки за 1 час = 1/10 - 1/15 = 1/30
Следовательно, утечка опустошит весь бачок за 30 часов.

Q.3. Две трубы могут заполнить резервуар за 12 и 20 часов соответственно. Трубы открываются одновременно, и выясняется, что из-за утечки на дне для заполнения цистерны требуется 30 минут дополнительных. Если цистерна заполнена, через какое время утечка опустошит ее?

а) 120 часов

б) 100 часов

c) 115 часов

г) 112 часов

Ответ и объяснение

Sol: опция A
Пояснение: Цистерна заполнена обеими трубами за один час = 1/12 + 1/20 = 2/15-е
Таким образом, обе трубы заполнили резервуар за 15/2 часа.
Теперь из-за утечки обе трубы заполнили цистерну за 15/2 + 30/60 = 8 часов.
Следовательно, из-за утечки, заполненная часть за один час = 1/8
Следовательно, часть цистерны опорожнена из-за утечки за один час = 2 / 15-1 / 8 = 1/120-ая
∴ Через 120 часов утечка опустеет цистерна.

Q.4. Две трубы P и Q могут заполнить цистерну за 36 и 48 минут соответственно. Обе трубы открываются вместе, через сколько минут следует отключить Q, чтобы бачок наполнился за 24 минуты?

а) 6 мин

б) 16 мин

в) 10 мин

г) 12 мин

Ответ и объяснение

Sol: Опция B
Пояснение: P может заполнить цистерну за 36 минут, поэтому за 1 минуту P может заполнить цистерну = 1/36 часть
За 24 минуты P может заполнить цистерну = 24 / 36 = 2/3.Оставшаяся часть = 1- 2/3 = 1/3-я
Поскольку Q может заполнить полную цистерну за 48 минут, так он заполнит
1/3-ю часть за 16 минут.

Q.5. Две трубы A и B могут заполнить резервуар за 20 и 16 часов соответственно. Только труба B остается открытой в течение 1/4 времени, а обе трубы остаются открытыми все оставшееся время. Через сколько часов бак будет полным?

а) 18 1/3 часа

б) 20 часов

c) 10 часов

г) 12 1/4 часа

Ответ и объяснение

Sol: Опция C
Пояснение: Пусть требуется время x часов, затем
⇒ x / 16 + 3x / 80 = 1⇒ x = 11 = 10 часов.

Обязательно прочтите статьи о трубах и цистернах

Q.6. Два крана M и N могут отдельно заполнить цистерну за 30 и 20 минут соответственно. Они начали заполнять цистерну вместе, но кран A отключается через несколько минут, а кран B заполняет остальную часть цистерны за 5 минут. Через сколько минут кран M был выключен?

а) 9 мин

б) 10 мин

в) 12 миль

d) Ни один из этих

Ответ и объяснение

Sol: опция A
Пояснение: Пусть M отключился через x мин.Затем цистерна заполнена M в x min + цистерна
, заполненная N в (x + 5) min = 1 ⇒ x / 30 + (x + 5) / 20 = 1 ⇒ 5x + 15 = 60 ⇒ x = 9 min.

Q7. Три наливные трубы A, B и C могут наполнять цистерну отдельно за 12, 16 и 20 минут соответственно. A был открыт первым. Через 2 минуты открыли B, и через 2 минуты после начала B открыли C. Найдите время, когда цистерна будет заполнена после открытия C?

a) 3 21/47 мин

б) 4 1/2 мин

в) 3 9 15/16 мин

d) Ни один из этих

Ответ и объяснение

Sol: Опция A
Пояснение: Пусть цистерна заполнится через x мин.Затем часть, заполненная буквой A в x min + часть, заполненная буквой C в (x-2) min + часть, заполненная буквой C в (x-4) min = 1
⇒ x / 12 + (x-2) / 16 + ( x-4) / 20 = 1 ⇒ 47x - 78 = 240⇒ x = 162/47 = 321/47 мин

Q8. Цистерна, заполненная за 20 часов тремя трубами A, B и C. Труба C в два раза быстрее, чем B, и B в три раза быстрее, чем A. Сколько времени потребуется только трубке A, чтобы заполнить резервуар?

а) 200 часов

б) 205 часов

c) 352 часа

г) Не может быть определено

Ответ и объяснение

Sol: Опция A
Пояснение: Предположим, что для заполнения резервуара только по трубе A требуется x часов.
Тогда для заполнения резервуара по трубам B и C потребуется x / 3 и x / 6 часов соответственно.
Следовательно, 1 / x + 3 / x + 6 / x = 1/20 ⇒ 10 / x = 1/20 ⇒ x = 200 часов

Q9. Три крана P, Q и R могут заполнить бак за 10, 20 и 30 часов соответственно. Если P открыт все время, а Q и R открыты каждый по одному часу каждый поочередно, то бак будет полным:

а) 6 часов

б) 6.5 часов

c) 7 часов

г) 7,5 часов

Ответ и объяснение

Sol: опция C
Пояснение: 1 час работы (P + Q) = (1/10 + 1/20) = 3/20
(A + C) 1 час работы = (1/10 + 1/30) = 2/15
Часть заполнена за 2 часа = (3/20 + 2/15) = 17/60
Часть заполнена за 6 часов = (3 × 17/60) = 17 / 20
Оставшаяся часть = (1-17 / 20) = 3/20
Теперь настала очередь P и Q, и часть 3/20 заполняется P и Q за 1 час.
Следовательно, Общее время, необходимое для заполнения бака = (6 + 1) часов = 7 часов

Q10. Бачок имеет протечку, которая опорожняет его за 10 часов, открывается кран, пропускающий 4 литра в минуту в бак, и теперь он опорожняется за 12 часов. Вместимость бака составляет:

а) 648 литров

б) 1440 литров

c) 1200 литров

г) 1800 литров

Ответ и объяснение

Sol: Option B
Пояснение: Пусть скорость велосипеда будет x км / час.Пусть скорость электромобиля будет y км / час
∴ 200 / x + 600 / y = 10 ∴ 300 / x + 500 / y = 11
Заполненная часть за 1 час
= (1 / 10-1 / 12) = 1/60
Время заполнения бака = 60 часов
Вода, заполненная за 60 часов = 4 * 60 * 60 = 1440 литров

.

18 труб | R для науки о данных

Введение

Pipes - это мощный инструмент для наглядного представления последовательности нескольких операций. До сих пор вы использовали их, не зная, как они работают и какие есть альтернативы. Теперь, в этой главе, пришло время более подробно изучить трубу. Вы узнаете об альтернативах трубке, когда трубку использовать не следует, и о некоторых полезных связанных инструментах.

Предварительные требования

Трубка, %>% , происходит из упаковки magrittr от Stefan Milton Bache.Пакеты в tidyverse загружают %>% за вас автоматически, поэтому вы обычно не загружаете magrittr явно. Однако здесь мы сосредоточены на конвейере и не загружаем никаких других пакетов, поэтому загрузим его явно.

Варианты трубопроводов

Смысл конвейера - помочь вам написать код таким образом, чтобы его было легче читать и понимать. Чтобы понять, почему конвейер так полезен, мы собираемся изучить несколько способов написания одного и того же кода. Давайте воспользуемся кодом, чтобы рассказать историю о маленьком кролике по имени Фу Фу:

Зайчик Фу Фу
Прыгнул по лесу
Зачерпнул полевых мышей
И похлопал их по голове

Это популярное детское стихотворение, которое сопровождается движениями рук.

Начнем с определения объекта, представляющего маленького кролика Фу Фу:

  foo_foo <- little_bunny ()  

И мы будем использовать функцию для каждого ключевого глагола: hop () , scoop () и bop () . Используя этот объект и эти глаголы, есть (по крайней мере) четыре способа пересказать историю в коде:

  1. Сохраните каждый промежуточный шаг как новый объект.
  2. Перезаписать исходный объект много раз.
  3. Составьте функции.
  4. Используйте трубу.

Мы проработаем каждый подход, покажем вам код и поговорим о преимуществах и недостатках.

Промежуточные шаги

Самый простой способ - сохранить каждый шаг как новый объект:

  foo_foo_1 <- hop (foo_foo, through = forest) foo_foo_2 <- scoop (foo_foo_1, up = field_mice) foo_foo_3 <- bop (foo_foo_2, on = head)  

Основным недостатком этой формы является то, что она заставляет вас давать имя каждому промежуточному элементу.Если есть естественные имена, это хорошая идея, и вы должны это сделать. Но часто, как в этом примере, нет естественных имен, и вы добавляете числовые суффиксы, чтобы сделать имена уникальными. Это приводит к двум проблемам:

  1. Код загроможден неважными именами

  2. Вы должны осторожно увеличивать суффикс в каждой строке.

Каждый раз, когда я пишу такой код, я неизменно использую неправильный номер в одной строке, а затем трачу 10 минут, почесывая затылок и пытаясь выяснить, что пошло не так с моим кодом.

Вы также можете беспокоиться о том, что эта форма создает много копий ваших данных и занимает много памяти. Удивительно, но это не так. Во-первых, обратите внимание, что упреждающее беспокойство о памяти - бесполезный способ тратить ваше время: беспокойтесь об этом, когда это станет проблемой (то есть у вас закончится память), а не раньше. Во-вторых, R не глуп и по возможности будет использовать столбцы во фреймах данных. Давайте посмотрим на реальный конвейер обработки данных, где мы добавляем новый столбец в ggplot2 :: diamonds :

.
  алмазов <- ggplot2 :: алмазы diamonds2 <- алмазы%>% dplyr :: mutate (price_per_carat = цена / карат) pryr :: object_size (ромбики) #> Зарегистрированный метод S3 перезаписан pryr: #> метод из #> печать.байтов Rcpp #> 3,46 МБ pryr :: object_size (бриллианты2) #> 3,89 МБ pryr :: object_size (бриллианты, бриллианты2) #> 3,89 МБ  

pryr :: object_size () дает память, занятую всеми его аргументами. Результаты сначала кажутся нелогичными:

  • бриллиантов занимает 3,46 Мб,
  • бриллиантов2 занимает 3,89 Мб,
  • бриллиантов и бриллиантов2 вместе занимают 3,89 МБ!

Как это может работать? Итак, ромбов2 имеет 10 общих столбцов с ромбов : нет необходимости дублировать все эти данные, поэтому два фрейма данных имеют общие переменные.Эти переменные будут скопированы, только если вы измените одну из них. В следующем примере мы изменяем единственное значение в бриллиантов $ карат. Это означает, что переменная карат больше не может использоваться совместно двумя кадрами данных, и необходимо сделать копию. Размер каждого кадра данных не изменяется, но общий размер увеличивается:

  бриллиантов $ карат [1] <- NA pryr :: object_size (ромбики) #> 3,46 МБ pryr :: object_size (бриллианты2) #> 3,89 МБ pryr :: object_size (бриллианты, бриллианты2) #> 4.32 МБ  

(обратите внимание, что здесь мы используем pryr :: object_size () , а не встроенный объект object.size () . object.size () принимает только один объект, поэтому он не может вычислить, как данные совместно используется несколькими объектами.)

Заменить оригинал

Вместо создания промежуточных объектов на каждом шаге мы могли бы перезаписать исходный объект:

  foo_foo <- hop (foo_foo, through = forest) foo_foo <- совок (foo_foo, up = field_mice) foo_foo <- bop (foo_foo, on = head)  

Это меньше печатает (и меньше думает), поэтому у вас меньше шансов на ошибку.Однако есть две проблемы:

  1. Отладка болезненна: если вы допустите ошибку, вам придется повторно запустить полный конвейер с самого начала.

  2. Повторение трансформируемого объекта (мы написали foo_foo six раз!) скрывает изменения в каждой строке.

Функциональный состав

Другой подход - отказаться от присваивания и просто связать вызовы функций вместе:

  боп ( совок ( хоп (foo_foo, through = forest), вверх = field_mice ), на = голова )  

Недостаток здесь в том, что вам нужно читать изнутри, справа налево, и что аргументы в конечном итоге расходятся далеко друг от друга (вызывающие воспоминания называемые проблема сэндвича Dagwood).Короче говоря, этот код трудно усвоить человеку.

Используйте трубу

Наконец, мы можем использовать pipe:

  foo_foo%>% прыжок (через = лес)%>% совок (вверх = field_mice)%>% боп (на = голову)  

Это моя любимая форма, потому что она ориентирована на глаголы, а не на существительные. Вы можете прочитать эту серию функциональных композиций как набор обязательных действий. Фу Фу хмель, потом совок, потом хмель. Минус, конечно же, в том, что с трубой нужно хорошо разбираться.Если вы никогда раньше не видели %>% , вы не поймете, что делает этот код. К счастью, большинство людей улавливают эту идею очень быстро, поэтому, когда вы делитесь своим кодом с другими, кто не знаком с трубкой, вы можете легко их научить.

Канал работает, выполняя «лексическое преобразование»: за кулисами magrittr пересобирает код в конвейере в форму, которая работает путем перезаписи промежуточного объекта. Когда вы запускаете трубу, подобную показанной выше, magrittr делает что-то вроде этого:

  my_pipe <- функция (.) { . <- прыжок (., через = лес) . <- scoop (., up = field_mice) боп (., на = голова) } my_pipe (foo_foo)  

Это означает, что труба не будет работать для двух классов функций:

  1. Функции, использующие текущую среду. Например, assign () создаст новую переменную с заданным именем в текущей среде:

      присвоить ("х", 10) Икс #> [1] 10 "x"%>% assign (100) Икс #> [1] 10  

    Использование assign с конвейером не работает, потому что оно назначает его временная среда, используемая %>% .Если вы хотите использовать assign с pipe, вы должны четко указать среду:

      env <- среда () "x"%>% assign (100, envir = env) Икс #> [1] 100  

    Другие функции с этой проблемой включают get () и load () .

  2. Функции, использующие отложенное вычисление. В R аргументы функции вычисляются только тогда, когда функция их использует, а не до вызова функция. Канал вычисляет каждый элемент по очереди, поэтому вы не можете полагаться на это поведение.

    Единственное место, где это проблема, - tryCatch () , который позволяет вам захватывать и обрабатывать ошибки:

      tryCatch (стоп ("!"), Error = function (e) "Ошибка") #> [1] "Ошибка" стоп ("!")%>% tryCatch (error = function (e) «Ошибка») #> Ошибка в eval (lhs, parent, parent):!  

    Существует относительно широкий класс функций с таким поведением, включая try () , suppressMessages () и suppressWarnings () в базе R.

.

20 # Труба из углеродистой стали 20 Трубка

GB

10,20,35,45, Q295, Q345,16MnDG, 10MnDG, 09DG, 09Mn2VDG, 06Ni3MoDG, 20G, 20MnG, 25MnG, 9000Go, 20CGo 150004

, 15CrMoG, 12Cr2MoG, 12Cr1MoVG, 12Cr2MoWVTiB, 12Cr3MoVSiTiB,

1Cr9Mo1VNb, 16Mn, 15MnV, 10MoWVNb, 40Mn2,45Mn2,27SiMn, 40MnB, 45MnB, 20Mn2B, 20Cr, 30Cr

, 35Cr, 40Cr, 45Cr, 50Cr, 38CrSi, 12CrMo , 15CrMo, 20CrMo, 35CrMo, 42CrMo, 12CrMoV,

12Cr1MoV, 38CrMoAl, 50CrVA, 20CrMn, 20CrMnSi, 30CrMnSi, 20CrMnTi, 30CrMnTi, 12CrNi2,

12CrNi3,12CrNi4,40CrNiMoA, 45CrNiMoVA, 1Cr5Mo, 12Cr2Mo и т.д.

ASTM

ASTM A209 / A209M (T1, T1A, T1B),

ASTM A213 (T2, T5, T5b, T5c, T9, T11, T12, T17, T21, T22, T91, T92,),

ASTM A335 / A335M (P1, P2, P5, P5b, P5c, P9, P11, P12, P15, P21, P22, P23, P91, P92, P122, P911),

ASTM A199 T11, T22, T9, ASTM A200 T5, T9, T11, T22,

ASTM A106 A / B / C, ASTM A500 A / B / C / D, ASTM A53 A / B, ASTM A179, ASTM A192,

ASTM A178 C, ASTM A21 0 A1 / C и т. Д.

DIN EN

St37, St37-2, St37-3U, St37-3N., RSt-2, USt37-2, St35, St45, TTSt35N, TTSt35V, 26CrMo4,

11MnNi5-3,13MnNi6-3,10Ni14,12Ni19, X8Ni9, St35.8, St45.8,19Mn5,17Mn4,15Mo3,13 ,

10CrMo9-10,14MoV63, X20CrMoV12,25CrMo4,13CrMo4-4,10CrMo9-10,12CrMo9-10,

12CrMo12-10,12CrMo19-5, X12CrMo9-1,20Cr12CrMoVr13-5 и т. Д.

.

Смотрите также