Какую нагрузку выдерживает профильная труба 40х20


Максимальная нагрузка на профильную трубу: способы расчета

Выбирая профильную трубу, необходимо особое внимание уделять её параметрам и учитывать какую нагрузку выдержит профильная труба.

Эти трубы используются, в качестве каркасов для различных сооружений, поэтому подбирать изделия необходимо максимально ответственно.

Преимущества профильных труб заключается в их:

  • легкости;
  • надежности;
  • устойчивости к нагрузкам;
  • простоте монтажа.

Нагрузка, действующая на профильную трубу

Если планируется изготовить беседку или теплицу, то серьезно задумываться о нагрузках не стоит, так как такие конструкции не подвержены воздействию серьезных сил. А вот если изготавливается навес, козырек, каркас для более серьезного сооружения – то здесь просто необходимы обстоятельные рассчеты.

Профильные трубы устойчивы к деформации, но и у них есть предел. Если нагрузка будет соответствовать норме, то изделие, под действием груза, например, мокрого снега, может согнуться. Если снег удалить, то труба примет свою исходную форму. В том случае, когда допустимая нагрузка превышена, труба не восстановит форму. Это в лучшем случае, в худшем – она просто разорвется.

При выборе профильной трубы, таким образом, необходимо учитывать:
размеры;

  • сечение. Как правило, используются прямоугольные трубы и трубы с квадратным сечением;
  • напряжение каркаса из труб;
  • прочность материала;
  • вероятные нагрузки, которые могут возникнуть в процессе эксплуатации.

Классификация нагрузок

Одним из критериев классификации является время воздействия нагрузок. Виды таких нагрузок установлены СП 20.13330.2011. И они таковы:

  • постоянные. То есть, не меняется ни вес, ни такой показатель, как давление, в течение достаточно долгого времени. Пример постоянной нагрузки: вес и давление элементов здания;
  • временные, но длительные. Например, вес перегородок из ДСП;
  • кратковременные. Это именно о том, о чем шла речь выше: о снеге, ветре и других природных явлениях;
  • особые. Например, нагрузки от взрывов и ударов машин.

Таким образом, если на территории домовладения сооружается навес, то нужно учитывать ряд нагрузок:

  • от снега и ветра;
  • от возможных столкновений с авто.

На территориях, где бывают периодически землетрясения, нельзя не учитывать данный фактор. На таких территориях конструкции должны быть максимально прочными.

Расчетные схемы

Расчетные схемы учитывают не только виды нагрузок, но и то, каким образом нагрузка распределяется по конструкции. Например, опоры могут испытывать более серьезные нагрузки, а поперечные дополнительные элементы – небольшие.

Максимальные нагрузки

Чтобы понять, какие максимальные нагрузки установлены для труб, необходимо изучить следующие таблицы.

Таблица 1. Нагрузка для профильной трубы квадратного сечения

Размеры профиля, мм Максимальная нагрузка, кг с учетом длины пролета
1 метр 2 метра 3 метра 4 метра 5 метров 6 метров
Труба 40х40х2 709 173 72 35 16 5
Труба 40х40х3 949 231 96 46 21 6
Труба 50х50х2 1165 286 120 61 31 14
Труба 50х50х3 1615 396 167 84 43 19
Труба 60х60х2 1714 422 180 93 50 26
Труба 60х60х3 2393 589 250 129 69 35
Труба 80х80х3 4492 1110 478 252 144 82
Труба 100х100х3 7473 1851 803 430 253 152
Труба 100х100х4 9217 2283 990 529 310 185
Труба 120х120х4 13726 3339 1484 801 478 296
Труба 140х140х4 19062 4736 2069 1125 679 429

Таблица 2. Нагрузка для профильной трубы прямоугольного сечения (рассчитывается по большей стороне)

Размеры профиля, мм Максимальная нагрузка, кг с учетом длины пролета
1 метр 2 метра 3 метра 4 метра 5 метров 6 метров
Труба 50х25х2 684 167 69 34 16 6
Труба 60х40х3 1255 308 130 66 35 17
Труба 80х40х2 1911 471 202 105 58 31
Труба 80х40х3 2672 658 281 146 81 43
Труба 80х60х3 3583 884 380 199 112 62
Труба 100х50х4 5489 1357 585 309 176 101
Труба 120х80х3 7854 1947 846 455 269 164

Указаны максимальные нагрузки, в результате которых не произойдет разрыва трубы. Элемент конструкции согнется и, в дальнейшем, не примет изначальной формы. Если же максимальная нагрузка на профильную трубу будет превышена, то тогда уже случится разрыв.

Методы расчета нагрузки

Используются следующие методы:

  • при помощи разработанных таблиц;
  • использование физических формул;
  • расчет при помощи специального калькулятора.

Чтобы рассчитать нагрузку при помощи таблиц, необходимо составить характеристики фактически имеющейся трубы с теми, характеристиками, которые имеются в таблице.
Если расчет нагрузки на профильную трубу ведется при помощи формул, то, в основном, используется такая формула: Ризг= M/W. Изгибающий момент делится на сопротивление.

Существуют и специальные калькуляторы, разработанные специалистами. Однако пользоваться такими калькуляторами можно только в том случае, если они размещены на надежных интернет-сайтах или переданы в пользование компетентными лицами, которые хорошо разбираются в нагрузках на профильные трубы.

Следует подчеркнуть: не стоит делать расчеты самостоятельно. Во-первых, для правильного проведения расчетов, необходимо знать ГОСТы и сопромат. Во-вторых, малейший просчет может привести к серьезным последствиям.

Таким образом, расчет нагрузки на трубы – это очень важная процедура. Пренебрежение ей может повлечь серьезные последствия:

  • разрушение конструкции, здания;
  • наличие пострадавших и жертв.

В новостях, иногда, можно увидеть сюжеты о том, что где-то обрушилась крыша здания или его иные элементы. Такие ситуации, чаще всего, складываются из-за того, что в расчетах были допущены ошибки.

Полное руководство по размерам и спецификациям труб - Бесплатная карманная таблица

Перейти к содержанию
  • На главную
  • ТрубопроводыРазвернуть / Свернуть
    • ТрубопроводРазвернуть / Свернуть
      • Направляющая по трубам
      • Размеры и график труб
      • Цвета графиков труб
      • Коды
      • Производство бесшовных и сварных труб
      • Осмотр труб
    • ФитингиРазвернуть / свернуть
      • Руководство по трубным фитингам
      • Производство трубных фитингов
      • Размеры и материалы трубных фитингов
      • Осмотр трубных фитингов - Визуальные и испытания
      • 90 и 45 градусов
      • Размеры трубных колен и возвратных труб
      • Размеры тройника
      • Размеры трубного редуктора
      • Размеры заглушки
      • Размеры трубной муфты
    • Фланцы расширяются / складываются
      • Направляющие для фланцев
      • Направляющие для фланцев
      • Номинальные характеристики фланца
      • Размеры фланца с приварной шейкой
      • Размеры фланца RTJ
      • Размеры фланца для соединения внахлест
      • Размеры фланца с длинной приварной шейкой
      • Размеры фланца приварной втулки
      • Размеры фланца с муфтой
      • Размеры фланца с глухим фланцем
      • Размеры фланца
      • КлапаныРазвернуть / Свернуть
        • Направляющая клапана
        • Детали клапана и трим клапана
        • Запорный клапан
        • Проходной клапан
        • Шаровой клапан
        • Обратный клапан
        • Поворотный клапан
        • Стержень
        • Пробка
        • Пробка
        • Клапан сброса давления
      • Материал трубыРасширение / сжатие
        • Направляющая материала трубы
        • Углеродистая сталь
        • Легированная сталь
        • Нержавеющая сталь
        • Цветные материалы
        • Неметаллы
        • ASTM A53
            110 0003 ASTM
          • ОлецЭкспа nd / Collapse
            • Направляющая
            • Weldolet и размеры
            • Sockolet и размеры
            • Threadolet и размеры
            • Latrolet и размеры
            • Elbolet и размеры
          • Болты шпилькиРасширение / свертывание
          • Болт
          • Процедура затяжки шпильки
            • Таблица фланцевых болтов
            • Размеры тяжелой шестигранной гайки
          • Прокладки и жалюзи для очков Развернуть / Свернуть
            • Направляющая прокладок
            • Спирально-навитая прокладка
            • Размеры спирально-навитой прокладки
            • Прокладка
            • и размер
            • Spectac4 Размеры слепых очков
        • P & IDExpand / Collapse
          • Как читать P&ID
          • Диаграмма технологического процесса
          • Символы P&ID и PFD
          • Символы клапана
        • Collapse
        • / Collapse
        • Работа и типы насосов
      • Сосуд под давлениемРазвернуть / свернуть
        • Скоро
    • Курсы
    • ВидеоРазвернуть / свернуть
      • Видеоуроки
      • हिंदी Видео
    • Блог
  • Блог
  • Политики
  • Запрос продукта
HardHat Engineer HardHat Engineer Search Искать:
  • Home
  • Трубопровод
    • Трубопровод
      • Трубопровод
      • Размеры труб и график
      • Диаграммы цветов
      • Диаграммы цветов 9000 Производство бесшовных и сварных труб
      • Осмотр труб
    • Фитинги
      • Руководство по трубопроводным фитингам
      • Производство трубных фитингов
      • Размеры и материалы трубных фитингов
      • Осмотр трубных фитингов - визуальный осмотр и испытания
      • Размеры отводов - 90 и 4 5 градусов
      • Размеры трубных колен и обратного канала
      • Размеры тройника
      • Размеры трубного редуктора
      • Размеры заглушки
      • Размеры трубной муфты
    • Фланцы
      • Направляющая фланца
      • Фланец с фланцем
      • Фланец
      • 0003 Фланец с приварной шейкой 9000
      • Размеры фланца приварной шейки
      • Размеры фланца RTJ
      • Размеры фланца для соединения внахлест
      • Размеры фланца с удлиненной приварной шейкой
      • Размеры фланца приварной втулки
      • Размеры фланца
      • Размеры глухого фланца
      • Размеры фланца
      • 21
      • Размеры фланца
      • 21 Клапаны
        • Направляющая
        • Детали клапана и трим клапана
        • Запорный клапан
        • Проходной клапан
        • Шаровой клапан
        • Обратный клапан
        • Дисковый клапан
        • Заглушка
        • Игольчатый предохранительный клапан
        • 9000
      • Материал трубы
        • Направляющая материала трубы
        • Углеродистая сталь
        • Легированная сталь
        • Нержавеющая сталь
        • Цветные металлы
        • Неметаллические
        • ASTM A53
        • ASTM A105
        • 000 Olets
          • Olets
          • Weldolet и размеры
          • Sockolet и размеры
          • Threadolet и размеры
          • Latrolet и размеры
          • Elbolet и размеры
        • Болты шпильки
          • Направляющая шпильки
          • Схема затяжки болтов
          • Тяжелый фланец
          • Размеры
        • Прокладки и жалюзи для очков
          • Направляющая прокладок
          • Спирально-навитая прокладка
          • Размеры спирально-навитой прокладки
      .

      Трубопроводов и цистерн - Вопросы и ответы о способностях Страница 2

      Упражнение: трубы и цистерна - общие вопросы

      6.

      Две трубы могут заполнить резервуар за 20 и 24 минуты соответственно, а сливная труба может опорожнить 3 галлона в минуту. Все три трубы, работающие вместе, могут заполнить резервуар за 15 минут.Вместимость бака:

      A. 60 галлонов
      B. 100 галлонов
      C. 120 галлонов
      D. 180 галлонов

      Ответ: Вариант C

      Пояснение:

      Работа сливной трубы за 1 минуту = 1 1 + 1
      15 20 24
      = 1 11
      15 120
      = - 1 .[-ve знак означает опорожнение]
      40
      Объем 1 часть = 3 галлона.
      40

      Общий объем = (3 x 40) галлонов = 120 галлонов.


      7.

      Резервуар заполняется за 5 часов с помощью трех труб A, B и C. Труба C в два раза быстрее, чем B, а B в два раза быстрее, чем A. Сколько времени потребуется одной только трубке A, чтобы заполнить резервуар?

      A. 20 часов
      Б. 25 часов
      C. 35 часов
      D. Не удается определить
      E. Ни один из этих

      Ответ: Вариант C

      Пояснение:

      Предположим, что для заполнения бака одной только трубой A требуется x часов.

      Тогда трубы B и C займут x и x часов соответственно на заполнение бака.
      2 4
      1 + 2 + 4 = 1
      x x x 5
      7 = 1
      x 5

      x = 35 часов.


      8.

      Две трубы A и B вместе могут заполнить цистерну за 4 часа. Если бы они были открыты отдельно, то B потребовалось бы на 6 часов больше, чем A, чтобы заполнить цистерну. Сколько времени потребуется А, чтобы заполнить бачок отдельно?

      Ответ: Вариант C

      Пояснение:

      Дайте цистерне заполнить только трубу А за x часов.

      Затем труба B заполнит его за ( x + 6) часов.

      1 + 1 = 1
      x ( x + 6) 4
      х + 6 + х = 1
      x ( x + 6) 4

      x 2 - 2 x - 24 = 0

      ( x -6) ( x + 4) = 0

      х = 6.[без учета отрицательного значения x ]


      9.

      Две трубы A и B могут заполнить резервуар за 20 и 30 минут соответственно. Если обе трубы используются вместе, то сколько времени потребуется для заполнения бака?

      Ответ: Вариант А

      Пояснение:

      Часть, заполненная буквой A за 1 мин = 1 .
      20
      Часть, заполненная элементом B за 1 мин = 1 .
      30
      Часть заполнена (A + B) за 1 мин. = 1 + 1 = 1 .
      20 30 12

      Обе трубы могут заполнить резервуар за 12 минут.


      10.

      Две трубы A и B могут заполнить резервуар за 15 и 20 минут соответственно. Обе трубы открываются вместе, но через 4 минуты труба A отключается. Какое общее время требуется для заполнения бака?

      А. 10 мин. 20 сек.
      Б. 11 мин. 45 сек.
      К. 12 мин. 30 сек.
      Д. 14 мин. 40 сек.

      Ответ: Вариант D

      Пояснение:





      .

      Трубопроводы и цистерны - вопросы и ответы о способностях

      Почему трубы и цистерна Aptitude?

      В этом разделе вы можете выучить и попрактиковаться в вопросах о способностях, основанных на "Pipes and Cistern", и улучшить свои навыки, чтобы пройти собеседование, конкурсные экзамены и различные вступительные испытания (CAT, GATE, GRE, MAT, банковский экзамен, железнодорожный экзамен и т. Д. .) с полной уверенностью.

      Где я могу получить вопросы и ответы по Aptitude Pipes и Cistern с пояснениями?

      IndiaBIX предоставляет вам множество полностью решенных вопросов и ответов о Aptitude (трубы и цистерны) с пояснениями.Решенные примеры с подробным описанием ответов, даны пояснения, которые легко понять. Все студенты и первокурсники могут загрузить вопросы викторины Aptitude Pipes и Cistern с ответами в виде файлов PDF и электронных книг.

      Где я могу получить вопросы и ответы на собеседовании с Aptitude Pipes и Cistern (тип цели, множественный выбор)?

      Здесь вы можете найти объективные вопросы и ответы для собеседований и вступительных экзаменов.Также предусмотрены вопросы с множественным выбором, а также вопросы истинного или ложного типа.

      Как решить проблемы с трубами и цистернами Aptitude?

      Вы можете легко решить все виды вопросов Aptitude, основанных на Pipes и Cistern, выполняя упражнения объективного типа, приведенные ниже, а также получить быстрые методы для решения проблем Aptitude Pipes и Cistern.

      Упражнение :: Трубы и цистерна - общие вопросы



      3.

      Насос может заполнить бак водой за 2 часа. Из-за протечки на заполнение бака ушло 2 часа. Утечка может слить всю воду из бака:

      Ответ: Вариант D

      Пояснение:

      Работа по утечке за 1 час = 1 3 = 1 .
      2 7 14

      Утечка опустошит резервуар через 14 часов.


      4.

      Две трубы A и B могут заполнить цистерну за 37 и 45 минут соответственно.Обе трубы открыты. Цистерна будет заполнена всего за полчаса, если выключить B после:

      Ответ: Вариант Б

      Пояснение:

      Позвольте B выключить через x минут. Затем

      Часть заполнена (A + B) за x мин. + Часть, заполненная буквой A за (30 - x ) мин. = 1.

      x 2 + 1 + (30 - х ). 2 = 1
      75 45 75
      11 х + (60-2 x ) = 1
      225 75

      11 x + 180 - 6 x = 225.

      x = 9.


      5.

      Емкость заполняется тремя трубками с равномерным потоком. Первые две трубы, работающие одновременно, заполняют резервуар за одно и то же время, в течение которого резервуар заполняется только третьей трубой. Вторая труба заполняет резервуар на 5 часов быстрее, чем первая труба, и на 4 часа медленнее, чем третья труба. Время, необходимое для первой трубы:

      A. 6 часов
      Б. 10 часов
      C. 15 часов
      D. 30 часов

      Ответ: Вариант C

      Пояснение:

      Предположим, что для заполнения резервуара только первая труба занимает x часов.

      Тогда для заполнения бака второй и третьей трубами потребуется ( x -5) и ( x -9) часов соответственно.

      1 + 1 = 1
      х ( x - 5) ( x - 9)
      x -5 + x = 1
      x ( x - 5) ( x - 9)

      (2 x - 5) ( x - 9) = x ( x - 5)

      x 2 - 18 x + 45 = 0

      ( x - 15) ( x - 3) = 0

      х = 15.[без учета x = 3]





      .

      Pipes General - Труба представляет собой полую трубу с круглым поперечным сечением для транспортировки продуктов

      Что такое труба?

      Труба - полая труба круглого сечения для транспортировки продуктов. Продукция включает жидкости, газ, гранулы, порошки и многое другое. Слово «труба» используется в отличие от «труба» и применяется к трубчатым изделиям с размерами, обычно используемыми для трубопроводов и трубопроводных систем. На этом сайте представлены трубы, соответствующие требованиям к размерам: ASME B36.10 Будут обсуждаться сварные и бесшовные трубы из кованой стали и труба из нержавеющей стали ASME B36.19 .

      Труба или трубка?

      В мире трубопроводов будут использоваться термины труба и труба. Труба обычно обозначается «номинальным размером трубы» (NPS), а толщина стенки определяется «номером спецификации» (SCH).

      Трубка обычно определяется ее наружным диаметром (O.D.) и толщиной стенки (WT), выраженными либо в бирмингемском калибре проволоки (BWG), либо в тысячных долях дюйма.

      Труба: NPS 1/2-SCH 40 имеет ровный внешний диаметр 21,3 мм при толщине стенки 2,77 мм.
      Трубка: 1/2 "x 1,5, ровный внешний диаметр 12,7 мм при толщине стенки 1,5 мм.

      В основном трубы используются в теплообменниках, приборных линиях и небольших соединениях в оборудовании, таком как компрессоры, котлы и т. Д.

      Материалы для трубы

      В инжиниринговых компаниях есть инженеры по материалам, которые определяют материалы, которые будут использоваться в системах трубопроводов.Большинство труб из углеродистой стали (в зависимости от условий эксплуатации) изготавливаются по различным стандартам ASTM.

      Труба из углеродистой стали - прочная, пластичная, свариваемая, обрабатываемая, достаточно прочная, долговечная и почти всегда дешевле, чем трубы из других материалов. Если труба из углеродистой стали может отвечать требованиям давления, температуры, коррозионной стойкости и гигиены, это естественный выбор.

      Труба железная изготавливается из чугуна и высокопрочного чугуна. Основное использование - водопровод, газ и канализация.

      Пластиковая труба может использоваться для транспортировки агрессивных жидкостей и особенно полезна для работы с коррозионными или опасными газами и разбавленными минеральными кислотами.

      Другие металлы и сплавы Можно легко получить трубы из меди, свинца, никеля, латуни, алюминия и различных нержавеющих сталей. Эти материалы относительно дороги и обычно выбираются либо из-за их особой коррозионной стойкости к химическим веществам процесса, их хорошей теплопередачи, либо из-за их прочности на разрыв при высоких температурах.Медь и медные сплавы являются традиционными для приборных линий, пищевой промышленности и теплообменного оборудования. Для них все чаще используются нержавеющие стали.

      Труба с футеровкой

      Некоторые материалы, описанные выше, были объединены в системы труб с футеровкой.
      Например, труба из углеродистой стали может иметь внутреннюю футеровку из материала, способного противостоять химическому воздействию, что позволяет использовать ее для транспортировки агрессивных жидкостей. Покрытия (например, Teflon®) могут быть применены после изготовления трубопровода, поэтому можно изготавливать целые бобины труб перед облицовкой.

      Другими внутренними слоями могут быть: стекло, различные пластмассы, бетон и т. Д., А также покрытия, такие как эпоксидная смола, битумный асфальт, цинк и т. Д., Могут помочь защитить внутреннюю трубу.

      При выборе правильного материала важно многое. Наиболее важными из них являются давление, температура, тип продукта, размеры, стоимость и т. Д.

      .

      Смотрите также