Коэф теплопроводности


Коэффициент теплопроводности материалов таблица, формулы

Термин «теплопроводность» применяется к свойствам материалов пропускать тепловую энергию от горячих участков к холодным. Теплопроводность основана на движении частиц внутри веществ и материалов. Способность передавать энергию тепла в количественном измерении – это коэффициент теплопроводности. Круговорот тепловой энергопередачи, или тепловой обмен, может проходить в любых веществах с неравнозначным размещением разных температурных участков, но коэффициент теплопроводности зависим от давления и температуры в самом материале, а также от его состояния – газообразного, жидкого или твердого. Эквивалентная теплопроводимость строительных материалов и утеплителей

 

Физически теплопроводность материалов равняется количеству тепла, которое перетекает через однородный предмет установленных габаритов и площади за определенный временной отрезок при установленной температурной разнице (1 К). В системе СИ единичный показатель, который имеет коэффициент теплопроводности, принято измерять в Вт/(м•К).

Как рассчитать теплопроводность по закону Фурье

В заданном тепловом режиме плотность потока при передаче тепла прямо пропорциональна вектору максимального увеличения температуры, параметры которой изменяются от одного участка к другим, и по модулю с одинаковой скоростью увеличения температуры по направлению вектора:

q = − ϰ х grad х (T), где:

  • q – направление плотности предмета, передающего тепло, или объем теплового потока, который протекает по участку за заданную временную единицу через определенную площадь, перпендикулярный всем осям;
  • ϰ – удельный коэффициент теплопроводности материала;
  • T – температура материала.
Перенос тепла в неравновесной термодинамической системе

 

Знак «-» в формуле перед «ϰ» указывает, что тепло движется в противоположном направлении от вектора grad х (T)/ – в направлении уменьшения температуры предмета. Эта формула отражает закон Фурье. В интегральном выражении коэффициент теплопередачи согласно закону Фурье будет выглядеть как формула:

  • P = − ϰ х S х ΔT / l, выражается в (Вт/(м•К) х (м2•К) / м = Вт/(м•К) х (м•К) = Вт), где:
  • P ­– общая мощность потерь теплоотдачи;
  • S – сечение предмета;
  • ΔT – разница температуры по стыкам сторон предмета;
  • l – расстояние между стыками сторон предмета – длина фигуры.
Связь коэффициента теплопроводимости с электропроводностью материалов

 

Электропроводность и коэффициент теплопередачи

Собственно, коэффициент теплопроводности металлов «ϰ» связан с их удельной электропроводимостью «σ» согласно закону Видемана-Франца, в соответствии с которым коэффициент теплопроводности металлов зависит от удельной электропроводимости прямо пропорционально температуре:

Κ / σ = π2 / 3 х (К / e)2 х T, где:

  • К – постоянный коэффициент Больцмана, устанавливающий закономерность между тепловой энергией тела и его температурой;
  • e – заряд электрона;
  • T – термодинамическая температура предмета.

Коэффициент теплопроводности газовой среды

В газовой среде коэффициент теплопроводности воздуха может рассчитываться по приблизительной формуле:

ϰ ~ 1/3 х p х cv х Λλ х v, где:

  • pv – плотность газовой среды;
  • cv – удельная емкость тепловой энергии при одном и том же объеме тела;
  • Λλ – расстояние свободного перемещения молекул в газовой среде;
  • v – скорость передачи тепла.
Что такое теплопроводимость

 

Или:

ϰ = I x К / 3 x π3/3 x d2 √ RT / μ, где:

  • i – результат суммирования уровней свободы прямого движения и вращения молекул в газовой среде (для 2-атомных газов i=5, для 1-атомных i=3;
  • К – коэффициент Больцмана;
  • μ – отношение массы газа к количеству молей газа;
  • T – термодинамическая температура;
  • d – ⌀ молекул газа;
  • R – универсальный коэффициент для газовой среды.

Согласно формуле минимальная теплопроводность материалов существует у тяжелых инертных газов, максимально эффективная теплопроводность строительных материалов – у легких.

Теплопроводимость в газовой разреженной среде

Газовая среда и теплопроводность

 

Результат по выкладкам выше, по которым делают расчет теплопроводности для газовой среды, от давления не зависит. Но в очень разреженной газовой среде расстояние свободного перемещения молекул зависит не от столкновений частиц, а от препятствий в виде стен резервуара. При этом ограничение перемещения молекул в соответствующих единицах измерения называют высоковакуумной средой, при которой степень теплообмена уменьшается в зависимости от плотности материала и прямо пропорциональна значению давления в резервуаре:

ϰ ~ 1/3 х p х cv х l х v, где:

i – объем резервуара;

Р – уровень давления в резервуаре.

Согласно этой формуле теплопроводность в вакуумной среде стремится к нулевой отметке при глубоком вакууме. Это объясняется тем, что в вакууме частицы, которые передают тепловую энергию, имеют низкую плотность на единицу площади. Но тепловая энергия в вакуумной среде перетекает посредством излучения. В качестве примера можно привести обычный термос, в котором для уменьшения потерь тепловой энергии стенки должны быть двойными и посеребренными, без воздуха между ними. Что такое тепловое излучение

 

При применении закона Фурье не принимают во внимание инерционность перетекания тепловой энергии, а это значит, что имеется в виду мгновенная передача тепла из любой точки на любое расстояние. Поэтому формулу нельзя использовать для расчетов передачи тепла при протекании процессов, имеющих высокую частоту повторения. Это ультразвуковое излучение, передача тепловой энергии волнами ударного или импульсного типа и т.д. Существует решение по закону Фурье с релаксационным членом:

τ х ∂q / ∂t = − (q + ϰ х ∇T) .

Если ре­лак­са­ция τ мгновенная, то формула превращается в закон Фурье.

Ориентировочная таблица теплопроводности материалов:

Основа Значение теплопроводности, Вт/(м•К)
Жесткий графен 4840 +/ 440 – 5300 +/ 480
Алмаз 1001-2600
Графит 278,4-2435
Бора арсенид 200-2000
SiC 490
Ag 430
Cu 401
BeO 370
Au 320
Al 202-236
AlN 200
BN 180
Si 150
Cu3Zn2 97-111
Cr 107
Fe 92
Pt 70
Sn 67
ZnO 54
 Черная сталь 47-58
Pb 35,3
Нержавейка Теплопроводность стали – 15
SiO2 8
Высококачественные термостойкие пасты 5-12
Гранит

(состоит из SiO2 68-73 %; Al2O3 12,0-15,5 %; Na2O 3,0-6,0 %; CaO 1,5-4,0 %; FeO 0,5-3,0 %; Fe2O3 0,5-2,5 %; К2О 0,5-3,0 %; MgO 0,1-1,5 %; TiO2 0,1-0,6 %)

2,4
Бетонный раствор без заполнителей 1,75
Бетонный раствор со щебнем или с гравием 1,51
Базальт

(состоит из SiO2 – 47-52%, TiO2 – 1-2,5%, Al2O3 – 14-18%, Fe2O3 – 2-5%, FeO – 6-10%, MnO – 0,1-0,2%, MgO – 5-7%, CaO – 6-12%, Na2O – 1,5-3%, K2O – 0,1-1,5%, P2O5 – 0,2-0,5 %)

1,3
Стекло

(состоит из SiO2, B2O3, P2O5, TeO2, GeO2, AlF3 и т.д.)

1-1,15
Термостойкая паста КПТ-8 0,7
Бетонный раствор с наполнителем из песка, без щебня или гравия 0,7
Вода чистая 0,6
Силикатный

или красный кирпич

0,2-0,7
Масла

на основе силикона

0,16
Пенобетон 0,05-0,3
Газобетон 0,1-0,3
Дерево Теплопроводность дерева – 0,15
Масла

на основе нефти

0,125
Снег 0,10-0,15
ПП с группой горючести Г1 0,039-0,051
ЭППУ с группой горючести Г3, Г4 0,03-0,033
Стеклянная вата 0,032-0,041
Вата каменная 0,035-0,04
Воздушная атмосфера (300 К, 100 кПа) 0,022
Гель

на основе воздуха

0,017
Аргон (Ar) 0,017
Вакуумная среда 0

Приведенная таблица теплопроводности учитывает теплопередачу посредством теплового излучения и теплообмена частиц. Так как вакуум не передает тепло, то оно перетекает при помощи солнечного излучения или другого типа генерации тепла.  В газовой или жидкой среде слои с разной температурой смешиваются искусственно или естественным способом.

Таблица теплопроводимости стройматериалов

 

Проводя расчет теплопроводности стены, необходимо принимать во внимание, что теплопередача сквозь стеновые поверхности меняется от того, что температура в здании и на улице всегда разная, и зависит от площади всех поверхностей дома и от теплопроводности стройматериалов.

Чтобы количественно оценить теплопроводность, ввели такое значение, как коэффициент теплопроводности материалов. Он показывает, как тот или иной материал способен передавать тепло. Чем выше это значение, например, коэффициент теплопроводности стали, тем эффективнее сталь будет проводить тепло.

  • При утеплении дома из древесины рекомендуется выбирать стройматериалы с низким коэффициентом.
  • Если стена кирпичная, то при значении коэффициента 0,67 Вт/(м2•К) и толщине стены 1 м при ее площади 1 м2 при разнице наружной и внутридомовой температуры 10С кирпич будет пропускать 0,67 Вт энергии. При разнице температур 100С кирпич будет пропускать 6,7 Вт и т.д.

Стандартное значение коэффициента теплопроводимости теплоизоляции и других строительных материалов верно для толщины стены 1 м. Чтобы провести расчет теплопроводности поверхности другой толщины, следует коэффициент поделить на выбранное значение толщины стены (метры). Ориентировочные показатели коэффициентов теплопроводимости

 

В СНиП и при проведении расчетов фигурирует термин «тепловое сопротивление материала», он означает обратную теплопроводность. То есть при теплопроводности листа пенопласта 10 см и его теплопроводности 0,35 Вт/(м2•К) тепловое сопротивление листа – 1 / 0,35 Вт/(м2•К) = 2,85 (м2•К)/Вт.

Ниже – таблица теплопроводности для востребованных строительных материалов и теплоизоляторов:

Стройматериалы Коэффициент теплопроводимости, Вт/(м2•К)
Плиты из алебастра 0,47
Al 230
Шифер асбоцементный 0,35
Асбест (волокно, ткань) 0,15
Асбоцемент 1,76
Асбоцементные изделия 0,35
Асфальт 0,73
Асфальт для напольного покрытия 0,84
Бакелит 0,24
Бетон с заполнителем щебнем 1,3
Бетон с заполнителем песком 0,7
Пористый бетон – пено- и газобетон 1,4
Сплошной бетон 1,75
Термоизоляционный бетон 0,18
Битумная масса 0,47
Бумажные материалы 0,14
Рыхлая минвата 0,046
Тяжелая минвата 0,05
Вата – теплоизолятор на основе хлопка 0,05
Вермикулит в плитах или листах 0,1
Войлок 0,046
Гипс 0,35
Глиноземы 2,33
Гравийный заполнитель 0,93
Гранитный или базальтовый заполнитель 3,5
Влажный грунт, 10% 1,75
Влажный грунт, 20% 2,1
Песчаники 1,16
Сухая почва 0,4
Уплотненный грунт 1,05
Гудроновая масса 0,3
Доска строительная 0,15
Фанерные листы 0,15
Твердые породы дерева 0,2
ДСП 0,2
Дюралюминиевые изделия 160
Железобетонные изделия 1,72
Зола 0,15
Известняковые блоки 1,71
Раствор на песке и извести 0,87
Смола вспененная 0,037
Природный камень 1,4
Картонные листы из нескольких слоев 0,14
Каучук пористый 0,035
Каучук 0,042
Каучук с фтором 0,053
Керамзитобетонные блоки 0,22
Красный кирпич 0,13
Пустотелый кирпич 0,44
Полнотелый кирпич 0,81
Сплошной кирпич 0,67
Шлакокирпич 0,58
Плиты на основе кремнезема 0,07
Латунные изделия 110
Лед при температуре 00С 2,21
Лед при температуре -200С 2,44
Лиственное дерево при влажности 15% 0,15
Медные изделия 380
Мипора 0,086
Опилки для засыпки 0,096
Сухие опилки 0,064
ПВХ 0,19
Пенобетон 0,3
Пенопласт марки ПС-1 0,036
Пенопласт марки ПС-4 0,04
Пенопласт марки ПХВ-1 0,05
Пенопласт марки ФРП 0,044
ППУ марки ПС-Б 0,04
ППУ марки ПС-БС 0,04
Лист из пенополиуретана 0,034
Панель из пенополиуретана 0,024
Облегченное пеностекло 0,06
Тяжелое вспененное стекло 0,08
Пергаминовые изделия 0,16
Перлитовые изделия 0,051
Плиты на цементе и перлите 0,085
Влажный песок 0% 0,33
Влажный песок 0% 0,97
Влажный песок 20% 1,33
Обожженный камень 1,52
Керамическая плитка 1,03
Плитка марки ПМТБ-2 0,035
Полистирол 0,081
Поролон 0,04
Раствор на основе цемента без песка 0,47
Плита из натуральной пробки 0,042
Легкие листы из натуральной пробки 0,034
Тяжелые листы из натуральной пробки 0,05
Резиновые изделия 0,15
Рубероид 0,17
Сланец 2,100
Снег 1,5
Хвойная древесина влажностью 15% 0,15
Хвойная смолистая древесина влажностью 15% 0,23
Стальные изделия 52
Стеклянные изделия 1,15
Утеплитель стекловата 0,05
Стекловолоконные утеплители 0,034
Стеклотекстолитовые изделия 0,31
Стружка 0,13
Тефлоновое покрытие 0,26
Толь 0,24
Плита на основе цементного раствора 1,93
Цементно-песчаный раствор 1,24
Чугунные изделия 57
Шлак в гранулах 0,14
Шлак зольный 0,3
Шлакобетонные блоки 0,65
Сухие штукатурные смеси 0,22
Штукатурный раствор на основе цемента 0,95
Эбонитовые изделия 0,15
Влажность и теплопроводимость – зависимость

 

Кроме того, необходимо учитывать теплопроводность утеплителей из-за их струйных тепловых потоков. В плотной среде возможно «переливание» квазичастиц из одного нагретого стройматериала в другой, более холодный или более теплый, через поры субмикронных размеров, что помогает распространять звук и тепло, даже если в этих порах  будет абсолютный вакуум.

Железо Коэффициент теплопроводности - Энциклопедия по машиностроению XXL

При / = 0° С коэффициент теплопроводности некоторых металлов равен меди — 390, алюминия — 209, железа—74 вт1 М град).  [c.270]

Пример 1-5. Определить значение эквивалентного коэффициента теплопроводности пакета листового трансформаторного железа из п листов, если толщина каждого листа 61 =0,5 мм и между ними проложена бумага толщиной Ss= =0,05 мм. Коэффициент теплопроводности железа i=60 и бумаги %2= =0,15 Вт/(м- С).  [c.18]

Пример 10-3. Какое количество теплоты передается через железное ребро толщиной 6 = 5 мм, высотой А == 50 мм и длиной / = 1 м и каков температурный напор на конце ребра, если коэффициент теплопроводности железа Я, = 50 Вт/(м-°С), коэффициент теплоотдачи = а = 10 Вт/(м -°С) и избыточная температура в основании ребра Ь, — 80°С.  [c.311]


Из приведенных данных видно, что металлы весьма резко выделяются среди других материалов своими высокими значениями коэффициента теплопроводности. При этом для чистых металлов значения X прямо пропорциональны соответствующим коэффициентам электропроводности. Обе величины убывают при повышении температуры. Примеси к металлам вызывают значительное уменьшение величин X. Так, для железа с содержанием 0,1 Vo углерода Х = 45, с 1Уо углерода Х = 34 и с 1,5 /о углерода Х= 31. Снижение коэффициентов теплопроводности происходит также при закалке сталей. Способов предсказания численных значений по химическому составу сплавов и по их физическому состоянию пока не существует, и вопрос в каждом случае должен решаться опытным путем.  [c.15]

Теплопроводность желе.за и сплавов на его основе имеет большое практическое значение. Поэтому преобладающее число работ по исследованию теплопроводности металлов посвящено исследованию сплавов на основе железа. Большое количество полученных при этом данных выявило некоторые специфические особенности поведения их коэффициентов теплопроводности.  [c.120]

Исследования показали, что уменьшение количества примесей в железе так же, как и для других металлов, приводит к увеличению теплопроводности его, однако одновременно с этим возрастает абсолютная величина температурного коэффициента теплопроводности, В соответствии с выражением (12) и экспериментальными данными теплопроводность чистого металла, как правило, почти не зависит от температуры, т. е. большой отрицательный температурный коэффициент теплопроводности железа является аномалией .  [c.120]

Из двух составляющих общей теплопроводности /. и /.ф только-одна — фононная теплопроводность — может иметь значительный отрицательный температурный коэффициент. Однако попытка объяснить величину и знак температурного коэффициента теплопроводности чистого железа большой долей фононной теплопроводности не приводит к успеху.  [c.120]

Исследование температурного поля горна усложняется изменением коэффициента теплопроводности огнеупорной кладки в связи с насыщением ее железом.  [c.466]

Физические свойства железа зависят от содержания примесей. Железо с содержанием примесей 0,01...0,1% имеет следующие свойства плотность 7840 кг/м коэффициент теплопроводности 74,04 Вт/(м К) удельное электрическое сопротивление 9,7 10 Ом/м температурный коэффициент электрического сопротивления 6,51 10 К температурный коэффициент линейного расширения 11,7-10 К твердость по Бринеллю 350...450 МПа модуль Юнга 190...210- 10 МПа прочность на разрыв а = 200...250 МПа относительное удлинение 5 = 45...55% ударная вязкость K U = 220...250 кДж/м .  [c.145]


Несколько отличное поведение наблюдается у железокобальтовых сплавов. Теплопроводность сплавов с присадкой кобальта к железу и железа к кобальту сначала резко уменьшается, а в середине диаграммы наблюдается довольно сильное повышение коэффициента теплопроводности у сплавов никеля с железом — понижение (рис. 270).  [c.464]

Коэффициент теплопроводности золовых отложений по своим численным значениям соизмерим с коэффициентом теплопроводности углекислого газа и воздуха при высоких температурах, а в ряде случаев даже ниже его. Нижний предел Х.зл близок к значению коэффициента теплопроводности стекловаты, а верхний — не превышает обычных значений коэффициентов теплопроводности огнеупорных материалов. Теплопроводность слоя Х,зл увеличивается с возрастанием температуры слоя и содержания в нем оксидов железа.  [c.174]

Сопротивление деформированию инструментальных Сталей в основном зависит от процентного содержания углерода. Чем больше в них углерода, тем ниже пластичность и выше сопротивление деформированию. Наличие в этих сталях вредных примесей (особенно серы и фосфора) приводит к понижению пластичности из-за появления красно- или синеломкости. Влияние легируюш,их элементов иа пластичность и механические свойства инструментальных сталей происходит вследствие замещения в решетке атомов железа атомами легирующего элемента. На основе физико-химических (коэффициента теплопроводности, температуры фазовых превращений и др.) и механических свойств (пластичности, сопротивления деформирования устанавливают температурный режим нагрева металла под ковку, температуру начала и конца ковки, выбор схемы процесса ковки и формы бойков, а также степень и скорость деформации.  [c.495]

Плотность твердых сплавов в известной степени характеризует степень их пористости, которая не должна превышать 0,2% (ГОСТ 4872— 75). Коэффициент теплопроводности твердых сплавов близок по своим значениям к коэффициенту теплопроводности сплавов железа. Твердые сплавы химически пассивны к воздействию кислот и щелочей, а некоторые из них почти не окисляются на воздухе даже при температурах 600—800° С. Главными недостатками твердых сплавов являются их хрупкость, а также недостаточная прочность при изгибе, растяжении. Для стандартных марок твердых сплавов (ГОСТ 3882—74) = 950- -1800 МПа, предел прочности при растяжении примерно в два раза меньше, чем 0 ударная вязкость а . — 2,5- 6,0 Н-м/см . В то же время предел прочности на сжатие твердых сплавов достигает значений Ов = 4000- 6000 МПа. Поэтому целесообразно так располагать режущие элементы инструмента, чтобы они по возможности работали на сжатие, а не на изгиб и растяжение.  [c.80]

Коэффициент теплопроводности стали (железа) Я=65 Вт/м-°С находим в приложении V. Следовательно,  [c.206]

Коэффициент теплопроводности стали (железа) Xi=65 Вт/м °С и магнезии A2=0,78 Вт/м °С находим из приложения V.  [c.207]

При наличии разного рода примесей (сплавы) коэффициент теплопроводности металлов резко убывает. Например, увеличение содержания углерода в стали приводит к уменьшению коэффициента теплопроводности. Коэффициент теплопроводности легированных сталей за счет присадок еще более низок. При температуре 100° С коэффициент теплопро водности армко-железа (99,9% Ре) равен 60, что примерно в 5 раз превышает Я, высоколегированной аустенитной стали. При этом рост температуры приводит к увеличению коэффициента теплопроводности высоколегированных сталей. Наоборот, коэффициент теплопроводности углеродистых и низколегированных сталей уменьшается при увеличении температуры.  [c.269]


Теплопроводность титана низкая — примерно в 13 раз ниже алюминия и в 4,4 раза ниже железа. Коэффициент линейного расширения титана меньше, чем железа и алюминия. Удельное электросопротивление довольно высокое — в 5 раз больше железа и в 17 раз больше алюминия.  [c.25]

Металлы имеют наибольшие значения коэффициента теплопроводности. Теплопроводность металлов уменьшается с ростом температуры и резко снижается при наличии в них примесей и легирующих элементов. Так, теплопроводность чистой меди равна 390 вт/м град, а меди со следами мышьяка — 140 вт м- град. Теплопроводность чистого железа 70 вт/м-град, стали с 0,5% углерода — 50 вт/м град, легированной стали с 18% хрома и 9% никеля — только 16 вт/м град. Зависимость теплопровод-  [c.210]

Наибольшим коэффициентом теплопроводности обладают металлы, наименьшим — газы. Например, коэффициент теплопроводности меди 334, железа 50, льда 2, воды 0,5 ккал м-чу, Хград). Коэффициент теплопроводности неподвижного воздуха при 20° С рав ен 0,022 ккал/ М Ч- град).  [c.8]

Немаловажное значение имеет и конфигурация штабеля насыпного материала, загруженного в вагон руда загружается в среднем примерно до половины высоты кузова, а уголь грузится с шапкой , т. е. выше уровня бортов полувагона. Существенный фактор в выборе конкретного способа оттаивания — это глубина промерзания смерзшегося груза. Интенсивность протекания процесса оттаивания зависит также от материала обшивки стен кузовов полувагонов, так как коэффициент теплопроводности дерева примерно в 10 раз ниже, чем железа. Поэтому соответственно типам вагонов подбираются и режимы оттаивания смерзшихся в них насыпных грузов.  [c.153]

Коэффициент теплопроводности титана в области рабочих температур (20—400° С) составляет 0,057—0,055 кал/(см-с-°С), что примерно в 3 раза меньше теплопроводности железа, в 16 раз меньше теплопроводности меди и близко к теплопроводности нержавеющих сталей аустенитного класса.  [c.6]

Окисление железа и его примесей сопровождается выделением большого количества тепла. Температура образующихся окислов, определяемая из равенства их теплосодержания тепловому эффекту реакции, очень высока. Так, при окислении чистого железа с начальной температурой 1800° К кислородом, имеющим температуру 300° К, последняя составляет около 4740°К (без учета испарения РеО). Один процент кремния повышает ее примерно на 85° К, марганца — на 10° К, а один процент углерода снижает на 10° К. По сообщению Л. М. Ефимова, эти данные не могут претендовать на большую точность, так как при определении теплосодержания жидких металлов и окислов в большинстве случаев приходится прибегать к экстраполяции зависимостей, относящихся к низким температурам, а иногда и к другому агрегатному состоянию вещества [48]. Высокотемпературный очаг реакции при продувке кислородом находится в среде с высоким значением коэффициента теплопроводности и с большей теплоемкостью. Металлическая ванна интенсивно перемешивается струей кислорода и образующейся окисью углерода. Воспользоваться выводами теории для вычисления величин теплового потока через реакционную поверхность в настоящее время невозможно, ибо отсутствуют необходимые для расчетов сведения.  [c.129]

Наиболее интенсивное разложение комплексонатов железа в котлах СКД происходит в экономайзере (80 %) и НРЧ (20 %). Отложения в НРЧ плотные, с достаточно высоким коэффициентом теплопроводности, что позволяет увеличить межпромывочный период до полутора лет.  [c.154]

Наиболее интересным сплавом в этой системе, применяемым для изготовления пассивных компонентов, является сплав, содержащий 36 % N1, так называемый инвар (т. е. неизменя-ющийся). Он имеет чрезвычайно низкий коэффициент теплового расширения, минимальный в этой системе (примерно в 12 раз меньший, чем у железа), малую теплопроводность и высокое удельное электросопротивление (1,0 мкОм-м). Малым коэффициентом теплового расширения в системе Ре — N1 обладают также сплавы с еще большим содержанием никеля (до 50 %).  [c.334]

Металлические наполнители применяют в виде порошка или стружки. При введении в состав ФАПМ меди, бронзы, латуни, цинка, алюминия, свинца, железа улучшаются теплопроводность и теплостойкость фрикционных материалов, стабилизируется коэффициент трения и повышается износостойкость. Металлические наполнители используют для снижения температуры на поверхности трения  [c.108]

Коэффициент теплопроводности высоколегированного хромистого чугуна составляет в среднем 0,042 кал1см-сек-°С (176 вт1м-°С), что соответствует приблизи тельно 45% теплопроводности железа.  [c.201]

Теплоизоляция (лабораторных сосудов В OIL 11/02 роторных компрессоров F 04 С 29/04 самолетов и т. п. В 64 С 1/40 сосудов F 17 С (высокого давления (баллонов) 1/12 низкого давления 3/02-3/10) В 65 D (тара с теплоизоляцией в упаковках) 81/38 труб F 16 L 59/(00-16) центрифуг В 04 В 15/02) Теплолокаторы G 01 S 17/00 Теплоносители, использование в инструментах и машинах для обработки льда F 25 С 5/10 Теплообменники [устройства для регулирования теплопередачи F 13/(00-18), 27/(00-02) паровые на судах В 63 Н 21/10 из пластических материалов В 29 L 31 18 F 27 (подовых печей В 3/26 регенеративные D 17/(00-04) шахтных печей В 1/22) систем охлаждения, размещение на двигателях F 01 Р 3/18] Теплопроводность (использование для сушки материалов F 26 В 3/18-3/26 исследование или анализ материала путем G 01 N (измерения их теплопроводности 25/(20-48) определения коэффициента теплопроводности 25/18)) Термитная сварка В 23 К 23/00 Термодис узия, использование для разделения В 01 D (жидкостей 17/09 изотопов 59/16) Термолюминесцентные источники света F 21 К 2/04 Термометры контактные G 05 D 23/00 Термообработка стали листового металла 9/46-9/48 литейного чугуна 5/00-5/16 общие способы и устройства 1/00-1/84) покрытий С 23 С 2/28 цветных металлов с целью изменения их физической структуры С 22 F 1/00-1/18) Термопары (Н 01 L 35/(28-32) использование радиационной пирометрии J 5/12-5/18 в термометрах К 7/02-7/14) G 01 для регулирования температуры G 05 D 23/22)] Термопластичные материалы [В 29 С (способы и устройства для экст-  [c.188]
Другой особенностью железа и его сплавов является значительное влияние структуры на теплопроводность. Так, углеродистая сталь после закалки, по данным Хаттори [5], имеет в 1,5 раза более низкий коэффициент теплопроводности, чем в отожженном состоянии, и положительный температурный коэффициент вместо отрицательного.  [c.120]

Относительно этих фактов высказывалось предположение, что уменьшение теплопроводности углеродистых сталей после закалки вызывается увеличением содержания примесей в твердом растворе (в который они переходят при закалке), а теплопроводность аустенита низка потому, что "1--железо обладает большей способностью растворять примесные элементы, чем а-железо. Однако теплопроводность и чистого железа зависит от строения атомной решетки железа. Согласно ряду достоверных исследований, теплопроводность чистого железа имеет минимум в области превращения а- в у-железо (900°), т. е. для объемноцентрирован-ной решетки железа характерно уменьшение теплопроводности с температурой, а для плотной гранецентрированной упаковки атомов железа характерен положительный температурный коэффициент теплопроводности. Таким образом, для чистого железа, влияние на теплопроводность которого различной растворимости примесей в модификациях решетки вряд ли следует принимать во внимание, заметна связь между температурным коэффициентом теплопроводности и строением кристаллической решетки железа.  [c.122]

В области рабочих температур большинства теплообменных агрегатов (20—400° С) коэффициент теплопроводности титана составляет 0,057—0,055 кал/(см-с-°С), что примерно в 3 раза меньше теплопроводности железа, в 16 раз меньше теплопроводности меди и близко к теплопроводности нержавеющих сталей аустенитного класса. Темп снижения теплопроводности у титанй при повышении температуры в данном интервале меньше, чем, например, у железа, у которого при переходе от 20 к 400°С коэффициент теплопроводности уменьшается от 0,157 до 0,107 кал/(см-с-°С), т. е. в 1,5 раза.  [c.19]

По сравнению с другими металлами ванадии плохой проводник тепла его коэффициент теплопроводности в интервале температур 100—500 составляет 0,074—0,088 кал/см-сек-град. Коэффициент теплопроводности железа при 20° равен 0,18, а меди 0,94 тл см-сек-град. Удельная теплоемкость ванадия при 20—100° равна 0,120 тл1г-град. Коэффициент линейного расширения нанадня мал и в интервале 200 -1000° равен 8.95-10". Коэффициент линейного расширения железа и меди при 20° равен соответственно  [c.108]

Кремниевая кислота является основным компонентом сложных силикатных накипей (до 50% кремниевой кислоты, да 30% оксидов железа, меди и алюминия и до 10% оксида натрия), которые способны огла1а(ься на стенках котлов и теплообменных аппаратов. Кремниевая кислота образует накипи с катионами кальция, магния, натрия, железа, аммония. Силикатная накипь обладает низким коэффициентом теплопроводности и поэюму существенно снижает теплотехнические показатели работы котлов и теплообменных аппаратов.  [c.592]

Основные свойства пенопластов очень небольшая плотность от 0,025 до 0,5 г/см (иногда до 0,6—0,7 г/см ) высокие звукопоглощающие и теплоизолирующие свойства. Например, для пенополивинилхлорида с Y=0,05-f--+0,1 г/см коэффициент теплопроводности Я= =0,03 ккал/(м-ч-°С), т. е. примерно в три-пять раз меньше, чем у стеклотекстолитов, в 3000 раз меньше, чем у железа.  [c.829]

Более разнообразны сведения о взаимодействиях с бором элементов VIII группы. Бор образует с а-Ре твердые растворы внедрения. Известны бориды железа РваВ, РеВ (и, возможно, РеВ19), свойства которых изучены сравнительно хорошо. Энтальпия нх низка (—41 кДж/моль для РеВ). Значения коэффициента теплопроводности этих соединений невысоки — 3 и 12 Вт/(м-К). Низкие величины электропроводимости (1,2—  [c.37]


Высокая теплозащита

Надежную теплозащиту обеспечивает коэффициент теплопроводности, который обозначается знаком – λ (лямбда). Показатель теплопроводности напрямую влияет на количество материала необходимого для утепления стен, кровли или фундамента, и как следствие на стоимость решения по утеплению дома. У эффективного утеплителя λ (лямбда) = 0,032 Вт/м-К.

Так, например, дешевого утеплителя с плохим (высоким) коэффициентом теплопроводности потребуется гораздо больше для того, чтобы обеспечить требуемую теплозащиту.

Коэффициент теплопроводности нельзя «пощупать руками», но от его значения, безусловно, зависит эффективность утеплителя. Производители указывают коэффициент теплопроводности в ТУ на продукцию и на своих интернет-сайтах, обращайте внимание на значение λ (лямбды).

Обратите внимание, что существуют такие параметры как λА и λБ (А - сухой климат, Б - влажный климат). Большинство регионов нашей страны находится во влажном климате, поэтому, выбирая теплоизоляцию, стоит больше ориентироваться на значения показателя λБ. 

Именно λБ отражает коэффициент теплопроводности в условиях, приближенных к реальным, а не лабораторным (т.е. с учетом того, что теплоизоляция будет впитывать определенное количество влаги из окружающей среды). Если показатели λА и λБ утеплителя существенно различаются, то это говорит о высоком водопоглощении теплоизоляции.

Утеплитель должен ГРЕТЬ, а не гореть!

Горючий утеплитель или нет – это не имеет значения, если он находится внутри конструктива. Пожаробезопасность совершенно не играет никакой роли, если, например, утеплитель закапывают в землю при утеплении фундамента или кладут под стяжкой при утеплении пола. При строительстве кирпичного дома стеновой утеплитель будет находиться внутри так называемой «колодезной кладки», где горючесть так же не имеет никакого значения.

Доверяйте жизненной логике, а не советам маркетологов. К примеру, мы с вами хорошо понимаем, что такое жить в деревянном доме, а по их логике такие строения давно пора было бы запретить - это же скопление самых настоящих дров!


Почему важно знать коэффициент теплопроводности полиуретана и как это влияет на качество теплоизоляции?

Зачем знать коэффициент теплопроводности при выборе утеплителя, как он влияет на качество теплоизоляции и как рассчитать толщину слоя утепления. Читайте в статье.

ППУ для теплоизоляции в сравнении с другими утеплителями

Пенополиуретан (ППУ) — газонаполненная пластмасса, которая получается в результате смешивания полиола и полиизоцианата. После химической реакции вещество увеличивается в объеме от 5 до 25 раз в зависимости от формулы.

В строительстве ППУ применяют для теплоизоляции. Его теплопроводность позволяет защитить от холода кирпичные и деревянные дома, строения из газобетона и камня, блочные и бетонные конструкции. Материал не пропускает влагу и может защищать от воды. Имеет высокую адгезию, легко заполняет щели и пустоты, устойчив к растворам щелочей, кислот, осадкам. При длительной эксплуатации пенополиуретан не плесневеет. Он не восприимчив к грибкам, защищает от насекомых и грызунов. Служит дольше 30 лет.

Пенополиуретан не горит и не выделяет в атмосферу вредные вещества. Компания «Химтраст» предлагает материалы с разным классом горючести: от «Химтраст СКН-60 Г1» (трудногорючий) до «Химтраст СКН-30 Г3» (самозатухающий).

В строительстве для теплоизоляции используют базальтовое волокно, стекловату, полиуретан, пенопласт, пенополистирол. Коэффициент теплопроводности полиуретана один из самых низких среди утеплителей. Чем ниже коэффициент, тем тоньше нужен слой утеплителя. 


Средний коэффициент теплопроводности полиуретана — 0,028 Вт/(м·К). У открытоячеистого ППУ, который используют для тепло- и шумоизоляции закрытых помещений — 0,037 Вт/(м·К). У закрытоячеистого для наружных стен — 0,022 Вт/(м·К). Этот показатель говорит о том, насколько сильно материал сопротивляется проникновению холода извне и отдаче тепла наружу. Сравнение теплопроводности ППУ приведено в Приложении 3 СНиП 2-3-79.


Базальтовый утеплитель, стекловата и эковата

Базальтовым утеплителем (каменной ватой) часто укрывают здания. Он не горит и способен к самозатуханию. Теплопроводность материала — 0,04 Вт/(м·К), это тоже хороший показатель, но, в отличие от ППУ, слой базальтового утеплителя должен быть в два раза толще, чтобы защитить конструкцию. Такой же коэффициент у стекловаты и эковаты.

Экструдированный пенополистирол

Плитами из экструдированного пенополистирола защищают жилые дома от холодов. Теплопроводность материала — 0,032 Вт/(м·К), этого достаточно для утепления, однако нужно учитывать и другие свойства пенополистирола. Его класс горючести Г4, он легко воспламеняется и выделяет токсины.

Пенопласт

Пенопласт по плотности схож с пенополистиролом, только менее устойчив к механическому воздействию и держит тепло хуже. Коэффициент теплопроводности — 0,038 Вт/(м·К). Значит, его слой при утеплении должен быть на 30 % толще, чем ППУ.

За тепло в помещении отвечает не только теплопроводность ППУ при изоляции, но и другие материалы: кирпичная кладка, облицовочные панели, слой штукатурки, гидроизоляция. Все они имеют плотность и влияют на защиту здания от холода. 

Теплопроводность ППУ в сухом и влажном состоянии

При намокании любой материал впитывает влагу и расширяется. Разбухание приводит к частичной или полной потере теплоизоляционных свойств. Поэтому важно обращать внимание на водопоглощение по объему, которое измеряется в процентах. 

У закрытоячеистого ППУ типа «Химтраст СКН-40 Г2» этот показатель — 2 %, а у базальтовых утеплителей — 35 %. Это значит, что при попадании влаги большая часть теплоизоляционных свойств минеральной ваты, эковаты и стекловаты будет утрачена. С коэффициентом водопоглощения пенополиуретана сравнимы показатели пенополистирола и пенопласта: 1 % и 4 %. Однако при утеплении эти материалы нужно укладывать плитами и не допускать зазоров между ними, иначе тепло будет уходить сквозь щели. ППУ для теплоизоляции наносят на поверхность установками безвоздушного напыления единым слоем без швов и зазоров. Подробнее прочитать о напылении ППУ можно в этой статье.

Как рассчитать толщину слоя ППУ для теплоизоляции

Толщина слоя утеплителя зависит от коэффициента теплопроводности полиуретана. Но также на нее влияют климатическая зона, влажность внутри помещения, температура, влагопоглощение и свойства материала.

Расчет теплоизоляционного слоя регламентируется нормативными документами: СНиП 23-02-2002, СП 23-101-2004 «Проектирование тепловой защиты зданий», ГОСТ Р 54851-2011. 

Один из основных показателей для расчета толщины — суммарное сопротивление теплопередаче конструкций или термическое сопротивление. Оно обозначает необходимую разницу температур снаружи и внутри материала для прохождения энергии. Измеряется в (м²·K)/Вт. Чем выше величина показателя, тем надежнее утеплитель.

Чтобы рассчитать сопротивление, нужно толщину материала в метрах разделить на коэффициент теплопроводности пенополиуретана. 

dппу = (Rтреб - Rконстр) • ʎппу = (Rтреб - dконстр / ʎконстр) • ʎппу,

где dппу — требуемый слой ППУ в метрах,

Rтреб — требуемое сопротивление теплопередаче в (м²·K)/Вт,

Rконстр — сопротивление теплопередаче существующей ограждающей конструкции в (м²·K)/Вт,

ʎппу — коэффициент теплопроводности ППУ в Вт/(м•K),

ʎконстр — коэффициент теплопроводности существующей ограждающей конструкции в Вт/(м•K).

Подробнее о том, как найти оптимальную толщину слоя утеплителя, читайте в статье.



Для утепления помещения необходимо учитывать коэффициент теплопроводности материала. В зависимости от его физико-химических свойств определяется способность удерживать тепло. Чем ниже коэффициент теплопроводности, тем лучше защищает от холода. Также важно учитывать другие особенности теплоизоляторов: способность отталкивать влагу, горючесть, экологичность и срок эксплуатации.


Не удается найти страницу | Autodesk Knowledge Network

(* {{l10n_strings.REQUIRED_FIELD}})

{{l10n_strings.CREATE_NEW_COLLECTION}}*

{{l10n_strings.ADD_COLLECTION_DESCRIPTION}}

{{l10n_strings.COLLECTION_DESCRIPTION}} {{addToCollection.description.length}}/500 {{l10n_strings.TAGS}} {{$item}} {{l10n_strings.PRODUCTS}} {{l10n_strings.DRAG_TEXT}}  

{{l10n_strings.DRAG_TEXT_HELP}}

{{l10n_strings.LANGUAGE}} {{$select.selected.display}}

{{article.content_lang.display}}

{{l10n_strings.AUTHOR}}  

{{l10n_strings.AUTHOR_TOOLTIP_TEXT}}

{{$select.selected.display}} {{l10n_strings.CREATE_AND_ADD_TO_COLLECTION_MODAL_BUTTON}} {{l10n_strings.CREATE_A_COLLECTION_ERROR}}

Определение коэффициента теплопередачи материалов

Для чего подбирают определенную толщину стены дома? 

 Естественно для обеспечения необходимых условий проживания: 

- прочности и устойчивости; 
- её теплотехнических характеристик; 
- комфортности проживания в помещении со стенами из данного материала. 

Согласно СНИПу 23-02-2003 нормативное значение сопротивления теплопередаче внешней стены дома зависит от региона. В таблице  необходимое сопротивление теплопередаче наружней стены в Красноярске будет 4,84 м2·°C/В.  

Вычисляем реальное сопротивление теплопередачи стены дома

Значение коэффициента теплопередачи стен зависит от типа и толщины каждого отдельно взятого материала, используемого для их возведения. Для определения этого коэффициента используют показатель Λ - W/(m²·K), т.е нужно разделить толщину материала (м) на коэффициент теплопроводности.

Пример:
Определим коэффициент теплопередачи наружней стены из 3D-панелей

 

Пенополистирол ПСБ-С-25 - 300 мм

Цементная штукатурка - 250 мм

 

 

 

1. В первую очередь следует определить коэффициенты теплопроводности применяемых материалов. Выбираем из таблицы:
пенополистирол ПСБ-С25   - 0,038  Вт/м*К
штукатурка цементная            - 0,9 Вт/м*К

2. Теперь определяем коэффициенты сопротивления теплопередачи по формуле:

R =D/λ, где D - толщина слоя в м;  λ - коэффициент теплопроводности W/(m²·K) взятый из таблицы

0,30 / 0,038 = 7,89
0,25 / 0,9 = 0,28 

Наименование материала Толщина материала, м Коэффициент теплопроводности, Вт/м*К Коэффициент сопротивление теплопередачи, м2 °С/Вт
Пенополистирол ПСБ-С25 0,30 0,038 7,89
Штукатурка цементная 0,25 0,9 0,28

3. Теперь просуммируем полученные величины и узнаем общий коэффициент сопротивление теплопередачи наружней стены 7,89 + 0,28 = 8,17 W/(m²·K)

Коэффициент сопротивление теплопередачи наружной стены из 3D-панелей  8,17 W/(m²·K) Рекомендуемое значение для Красноярска 4,84 (из таблицы), таким образом стена из 3D-панелей не только удовлетворяет «строгому» СНиП 23-02-2003, но и превосходит этот показатель, что гарантирует комфортное проживание в таком доме и позволяет экономить ваши деньги на отоплении и кондиционировании.

Определяем толщину стены из других строительных материалов что бы она соответствовала коэффициенту сопротивление теплопередачи наружней стены 8,17 W/(m²·K), как в 3D-панелях.

Используем формулу: D=λ*R, где
D - толщина слоя в м;
λ - коэффициент теплопроводности, W/(m²·K) взятый из таблицы;
R - Коэффициент сопротивление теплопередачи, м2 °С/Вт (в нашем случае это 8,17)

Наименование материала Коэффициент теплопроводности, Вт/м*К Толщина стены, м
3D-панель 0,55
Липа, береза, клен, дуб (15% влажности) 0,15 1,23
Керамзитобетон 0,2 1,63
Пенобетон 1000 кг/м3 0,3 2,45
Сосна и ель вдоль волокон 0,35 2,86
Дуб вдоль волокон 0,41 3,35
Кладка из кирпича на цементно-песчасном растворе 0,87 7,11
Железобетон 1,7 13,89

Мы видим из таблицы, что при одинаковом коэффициенте сопротивление теплопередачи 8,17 м2 °С/Вт толщина стен из различных строительных материалов разная, что влияет на размеры и стоимость дома.

Толщина стен из 3D-панелей 550 мм, а если взять кирпич без утеплителя то нужно стоить стену толщиной 7110 мм.

 

Таблица коэффициентов теплопроводности газов

Общие сведения о теплопередаче

Теория теплопередачи выделяет три вида передачи тепла в пространстве (или теплообмена):

  • теплопроводность;
  • конвекция;
  • термоизлучение.

Теплопроводность – это молекулярный процесс, который характеризуется передачей тепла при непосредственном соприкосновении тел с разницей температур за счёт обмена энергией движения структурных частиц.

Конвекция – это движение в пространстве частей среды с разницей температур, причём за счёт переноса самой среды.

Термоизлучение – это теплообмен посредством электромагнитного излучения.

Часто наблюдается совместное протекание всех процессов вместе.

Способность вещества проводить тепло зависит от интенсивности теплового движения его микрочастиц в случаях, когда возникновение конвективных механизмов невозможно. Этот вид теплообмена возникает при разной температуре соприкасающихся веществ.

Совокупность тепловых значений в различных точках вещества называют температурным полем. Такое поле может быть стационарным – если тепловой показатель всех точек не изменяется с течением времени. И стационарным – при изменяющейся температуре в точках в течение какого-нибудь промежутка времени.

Понятие коэффициента теплопередачи

С точки зрения физики явление передачи тепла можно объяснить стремлением любой системы занять положение равновесия, при котором затраты энергии будут минимальными. Система, выведенная из равновесия посредством теплового изменения какой-либо её части, стремится в кратчайшее время восстановить равновесие, выравнивая температуру в разных точках. Микрочастицы переносят тепло, выравнивая температурный показатель– это и есть теплопередача.

Явление переноса тепла мы наблюдаем в твёрдых телах, в жидкостях и в меньшей мере – в газах.

Возьмём некий объём идеального газа, заключённый между двумя плоскими стенками. При различающейся температуре этих стенок Т1 и Т2 для каждой из них соответственно, создастся тепловой поток микрочастиц, который переносит тепло от более тёплой стенки к более холодной, выравнивая разницу температур. На этом явлении строится, например, утепляющий эффект окна. Стёкла имеют высокую способность передавать тепло, но заключённый между ними воздух является проводником тепла, в 160 худшим, чем стекло.

Коэффициент теплопередачи – это величина, которую нам помогает вычислить полуэмпирическая формула, она характеризует способность вещества переносить определённое количество тепла за единицу времени.

Для различного рода расчётов существует таблица теплопроводности материалов, поскольку это имеет огромное практическое значение. От этой величины зависит, как можно использовать вещество – как термоизолятор или как теплопроводник.

Коэффициент теплопроводности газов в природе

Формула говорит о том, что идеальный газ прямо пропорционален температуре.То же самое мы наблюдаем у метана, углекислоты, гелия и других природных веществ.

В таблице 1 приведены коэффициенты теплопередачи различных веществ при разных температурах.

Исследования способности проводить тепло в различных условиях проводились, как правило, на примере метана и углекислоты. Это объясняется тем, исследования метана, как самого распространённого в природе, представляют большой интерес. Использование же в экспериментах углекислоты объясняется дешевизной и тем, что её свойства заметно отличаются от свойств прочих природных веществ.

Коэффициент теплопередачи идеального газа не зависит от давления. Способность переносить тепло у природных веществ при различных показаниях давления в умеренном диапазоне тоже будет практически одинаковой. Но это справедливо, если речь идёт не о вакууме или не о слишком высоких давлениях. При крайне низких или крайне высоких давлениях теплопроводность газа будет расти вместе с уровнем теплоты.

 

В таблице 2 мы видим значения коэффициента теплопроводности для различных газов. Обратите внимание, что величина коэффициента заметно отличается – например, у метана она практически в два раза больше, чем у углекислого газа. Это говорит о том, что применение углекислого газа в качестве термоизолятора будет более обоснованным, чем применение метана или любого другого газа с высокой способностью передавать тепло.

Теплопроводность - определение - Landingpages

Теплопроводность / теплопроводность λ [Вт / (м • К)] определяет перенос энергии в виде тепла; через определенную массу образца за счет внешней разности температур (см. рис. 1). Согласно второму закону термодинамики тепло всегда течет в сторону области с более низкой температурой.

Рисунок 1

Зависимость между количеством теплоты, переносимой в единицу времени (dQ/dt – тепловой поток Q ) и градиентом температуры (ΔT/Δx) для площади поверхности А, через которую тепло течет перпендикулярно при постоянная скорость, описывается основным уравнением теплопроводности.

Таким образом, коэффициент теплопроводности λ является постоянным свойством материала, характеризующим его в стационарных условиях теплопередачи. Его можно рассчитать по следующему уравнению:

сут: а - температуропроводность
с р - удельная теплоемкость
ρ - плотность

Значения теплопроводности для различных материалов приведены на рис. 2.

Плакаты NETZSCH
При производстве и обработке материалов ключевую роль играет знание их термических свойств.На наших плакатах вы найдете наиболее важные тепловые свойства для различных групп материалов.
Дополнительная информация

Ссылки по теме:

.

Теплопроводность - Medianauka.pl


© blueringmedia — stock.adobe.com

Теплопроводность - явление самопроизвольного выравнивания температуры во всем объеме физического тела без макроскопического движения вещества. Здесь мы имеем дело с потоком энергии в виде тепла.

Различные вещества по-разному проводят тепло. Медленнее всего этот процесс протекает в газах, намного быстрее в жидкостях и быстрее всего (за исключением избытка гелия) в металлах.Мерой скорости теплового потока является так называемый коэффициент теплопроводности.

Методы теплопередачи

Ниже перечислены методы передачи тепла:

  • конвекция,
  • теплопроводность,
  • излучение.

Теплопроводность

Коэффициент теплопроводности или теплопроводность — константа пропорциональности, найденная в Фурье , характерная для данного вещества и являющаяся мерой скорости теплового потока за счет теплопроводности.

Единица измерения коэффициента электропроводности: Дж / (К·м · с) = Вт / (К·м).

Чем больше значение этого коэффициента для данного вещества, тем лучше оно проводит тепло.

Закон Фурье

Плотность проводимого теплового потока q , т. е. количество энергии, протекающей в виде тепла в единицу времени через единицу поверхности, перпендикулярной направлению потока энергии, прямо пропорционально градиенту температуры:

где:

  • q - плотность теплового потока,
  • λ - коэффициент теплопроводности,
  • T - Температура в Кельвинах,
  • - производная температуры в направлении, перпендикулярном изотермической поверхности.

Еще другие подобные величины используются в физике и технике. Это, среди прочего, коэффициент теплопроводности , равный отношению коэффициента теплопроводности к удельной теплоемкости.

Массивы

К сожалению, теплопроводность зависит от многих факторов и не только от типа вещества. Это зависит от термодинамических условий и строения вещества. В таблицах обычно приводятся средние значения коэффициента для данной температуры.

Следующие коэффициенты теплопроводности при 25°С.

Вещество Коэффициент теплопроводности λ [Вт/(К·м)]
хлор 0,008
двуокись углерода 0,017
воздух 0,026
гелий 0,155
водород 0,185
керосин 0,15
этанол 0,167
глицерин 0,285
вода 0,606 (0,5562 при 0°С и 0,673 при 100°С)
ртуть 8.514
тканевый жир 0,17
кожа 0,33-1,5 (зависит от кровоснабжения)
пенополиуретан 0,03
полистирол 0,03-0,05
крышка 0,04-0,06
солома 0,06
сосна 0,11 (поперек волокон)
кирпич рядовой красный 0,4-0,6
оконное стекло 0,9-1,1
лед 2,34 (при 0°С)
мрамор 2-4
кремний 148
графит примерно 200
алмаз 2320-3500
титан 21,9
свинец 34,9
банка 66,7
платина 71,6
железо (сталь) 30-80
латунь 110
золото 317
медь 401
серебро 429

Как видно из таблицы выше, газы и некоторые твердые тела обладают низкой теплопроводностью.Это так называемые теплоизоляторы . Вещества, обладающие высоким коэффициентом теплопроводности, являются проводниками тепла , .

© medianauka.pl, 23.05.2021, ART-4057


.

Значения коэффициента лямбда - коэффициент теплопроводности строительных материалов

ЗНАЧЕНИЕ ЛЯМБДА [λ]

Теплопроводность - это информация о потоке энергии, протекающем через единицу поверхности слоя материала толщиной 1м, при разности температур по обе стороны этого слоя 1К (1°С). Коэффициент теплопроводности материала λ [Вт/(м•К)] является характеристическим значением данного материала. Это зависит от его химического состава, пористости, а также от влажности.

Важно:

Чем ниже значение λ, тем лучше теплоизоляционные свойства.

таблица коэффициента λ для материалов (условия средней влажности)

Битум

λ [Вт/(м·К)]

Битум нефтяной

0,17

Асфальтовая мастика

0,75

Асфальтобетон

1,00

Битумный войлок

0,18

Бетон

λ [Вт/(м·К)]

Бетон из простого каменного заполнителя

плотность 2400 кг/м3

1,70

плотность 2200 кг/м3

1,30

плотность 1900 кг/м3

1,00

Бетон на известковом заполнителе

плотность 1600 кг/м3

0,72

плотность 1400 кг/м3

0,60

плотность 1200 кг/м3

0,50

Тощий бетон

1,05

Цементная стяжка

1,00

Железобетон напр.потолок

1,70

Древесина и древесные материалы

λ [Вт/(м·К)]

Сосна и ель

поперек волокон

0,16

вдоль волокон

0,30

Бук и дуб

поперек волокон

0,22

вдоль волокон

0,40

Фанера

0,16

Пористая древесноволокнистая плита

0,06

Твердая фибровая плита

0,18

Опилки древесные, рассыпные

0,09

Щепа древесная, прессованная

0,09

Рассыпная древесная щепа

0,07

Гипс и изделия из гипса

λ [Вт/(м·К)]

Газогипс

0,19

Гипсокартон

0,23

Гипсовая стяжка, чистая

1,00

Гипсовая стяжка с песком

1,20

Гипсовые плиты и блоки

0,35

Природные камни

λ [Вт/(м·К)]

Мрамор, гранит

3,50

Песчаник

2,20

Известняк пористый

0,92

Известняк компактный

1,15

Стеновой щебень вкл.минометы 35% 9000 5

2,50

Материалы конструкции:

λ [Вт/(м·К)]

Стена из ячеистого бетона с тонкой противопожарной защитой (500)

0,17

Кладка бетонная ячеистаядля тонкой крышки (600)

0,21

Стена из ячеистого бетона с тонкой противопожарной защитой (700)

0,25

Стена из ячеистого бетона с тонкой противопожарной защитой (800)

0,29

Композитная бетонная стена для обшивки ce-wap (500)

0,25

Кладка бетонная ячеистаяпо приглашению ce-wap (600)

0,3

Композитная бетонная стена для ce-wap board (700)

0,35

Композитная бетонная стена для ce-wap board (800)

0,38

Стенка из керамического кирпича, отверстие

0,62

Стена из полнотелого керамического кирпича

0,77

Полая кирпичная стена

0,64

Кирпич клинкерный стеновой

1,05

Кирпичная стена в клетку

0,56

Полнотелая кирпичная стена

0,77

Пустотелый кирпич из силикатного кирпича

0,80

Полнотелая кирпичная стена из силикатного кирпича

0,90

Теплоизоляционные материалы:

λ [Вт/(м·К)]

Пенополистирол

0,031-0,045

Минеральная вата

0,033-0,045

Доски из вспененного пробкового дерева

0,045

Асфальтовые пробковые плиты

0,070

Соломенные доски

0,080

Тростниковые пластины

0,070

Цементно-стружечные плиты

0,15

Полиуретан (PUR/PIR)

0,023-0,029

Воздух (негазированный)

0,02

Белое пеностекло

0,12

Черное пеностекло

0,07

Экранирующие материалы

λ [Вт/(м·К)]

Цементная штукатурка

1

Известковая штукатурка

0,70

Цементно-известковая штукатурка

0,82

Штукатурка тонкослойная

0,70

Прочее

λ [Вт/(м·К)]

Алюминий

200

Цинк

110

Изоляционный войлок

0,060

Глина

0,85

Песчаная глина

0,70

Земля

0,90

Медь

370

Битумный войлок

0,18

Бумага

0,25

Средний песок

0,40

Облицовочная керамическая плитка, терракота

1,05

Картон

0,14

Конструкционная сталь

58

ACERMANA потолок 15см

0,9

ACERMANA потолок 18см

1

ACERMANA потолок 22см

1,14

Оконное стекло

0,80

Органическое стекло

0,19

Чугун

50

Печной шлак

0,28

Гравий

0,90

Напольное покрытие из ПВХ

0,20

.

Значение теплопроводности в строительстве. Проверьте, каким должно быть значение лямбда

.

Охрана окружающей среды перестала быть сезонным увлечением, а стала необходимостью. Соответствующие строгие стандарты также применяются к современному строительству. Заданные максимальные значения коэффициентов теплоотдачи и теплопроводности являются способом снижения энергопотребления. Вы задаетесь вопросом, как выбрать теплоизоляционные материалы с соответствующей теплопроводностью и получить значительную экономию в последующие годы после завершения инвестиций?

Теплопроводность на практике

Выбрать правильный, т.е. энергосберегающий теплоизоляционный материал, непросто.Стоит обратиться к современным решениям в этой области и остановить свой выбор на тех, которые отличаются максимально низкой теплопроводностью. Однако, прежде чем ознакомиться с предложением, доступным на рынке, ознакомьтесь с определением одного из основных и в то же время важнейших параметров, на который стоит обратить особое внимание.

Коэффициент теплопроводности, или сокращенно лямбда-коэффициент, определяет теплопроводность через структуру конкретного теплоизоляционного материала.Тепловой поток возникает в результате внешней разницы температур. Искомое значение должно быть как можно меньше, тогда гарантируется плохая теплопроводность и, следовательно, более эффективная изоляция.

Если вы заботитесь о долгосрочных преимуществах теплоизоляции здания, значение лямбда должно быть для вас особенно важным.

Теплопроводность в строительстве

Характеристики изоляционных материалов имеют особое значение как в современном, так и в существующем строительстве.Владельцы частных домов, старых и новых, ищут энергосберегающие решения. Стоит выбирать те материалы, которые отличаются низкой теплопроводностью. Что это значит для конечного эффекта и на что еще стоит обратить внимание?

Помните, что стоит выбирать изоляционный материал с минимально возможным значением теплопроводности. Чем ниже значение, тем меньше толщина изоляционного слоя и в то же время выше тепловой комфорт.

Современные изоляционные материалы

Производители инновационных теплоизоляционных материалов стремятся минимизировать толщину предлагаемой продукции.Боитесь, что тонкий слой не обеспечит достаточно высокого теплового комфорта? Выбирайте высококлассное решение и наслаждайтесь отличными результатами в течение многих лет после завершения инвестиций. Убедитесь сами, что разовая экономия не окупается. Стоит инвестировать в изоляцию, которая гарантирует долгосрочные выгоды.

Отличным решением станет теплоизоляция здания полиуретановыми плитами, называемыми плитами PIR. Этот тип материала характеризуется очень низкой теплопроводностью, что гарантирует его высокую эффективность при утеплении дома.Его популярность обусловлена ​​инновационной структурой на основе жесткой пены, покрытой гидро- и пароизоляцией, а также рекордно низкими коэффициентами теплопроводности и теплопередачи. Кроме того, он устойчив к биологической коррозии и влаге, негорюч и долговечен.

.

Медь и алмазы охладит ваш компьютер - Новые технологии

Материалы нового поколения, значительно лучше проводящие тепло, позволят еще больше миниатюризировать электронное оборудование, улучшить работу тормозных дисков и станков. Польские ученые работают над такими материалами — например, путем соединения алмазов с медью — в рамках проекта TERMET.

"Во время работы таких устройств, как компьютеры, станки или тормоза, выделяется большое количество тепла", - сказал координатор проекта "ТЕРМЕТ - Новые материалы с повышенной теплопроводностью" д-р Лукаш Чупински из Университетского исследовательского центра - Функциональные материалы Варшавского технологического университета.

Это тепло, объяснил ученый, нужно как можно скорее рассеять наружу. В противном случае устройство может сломаться. При отводе такого тепла важны материалы с очень высокой теплопроводностью – они моментально получают тепловую энергию от данного устройства и отдают ее наружу.

Однако одной высокой теплопроводности недостаточно. Теплорассеивающие материалы должны обладать дополнительными свойствами, например, быть прочными, а при изменении температуры не должны существенно изменяться в размерах, а значит, иметь низкое тепловое расширение.Они также не должны быть очень тяжелыми, и формовать их не должно быть сложно. "Свойства традиционных теплопроводных материалов не идеальны, - пояснил специалист. - Именно поэтому композиты, сочетающие в себе свойства материалов, из которых они изготовлены, намного лучше".

В рамках проекта ТЕРМЕТ разработана технология получения композита медь-синтетический алмаз. Такой материал можно использовать для охлаждения электронных устройств, например, процессоров в компьютерах.

«Все хотят, чтобы компьютеры работали все быстрее и быстрее, меньше и легче, но мы приближаемся к пределу», — сказал Чупиньски и подчеркнул, что дальнейшая миниатюризация будет невозможна, если не будут разработаны новые материалы и методы отвода тепла.

Д-р Чупински пояснил, что в настоящее время медные элементы в основном используются для охлаждения компьютеров. Проблема в том, что медь имеет высокое тепловое расширение. Если же его правильно соединить с алмазным порошком, то не только уменьшится тепловое расширение материала, но и вдвое увеличится его теплопроводность.Все это благодаря свойствам алмаза. Он добавил, что, хотя настоящие бриллианты являются роскошью, искусственный алмазный порошок не обязательно должен быть непомерно дорогим. Использование этого материала в производстве элементов компьютерного охлаждения может быть выгодным.

В свою очередь, в станках тепло пришлось бы отводить благодаря композитам с несколько иными свойствами - карбиду кремния и алюминию. Алюминий вдавливается в поры в структурах карбида кремния. Преимущество материала в том, что он легкий, а потому имеет малую инерцию, а это на высокоскоростных станках позволяет повысить точность движения режущего инструмента.

В рамках ТЕРМЕТ ученые компании AGH, которая также участвует в проекте, разработали технологию производства нитрида алюминия, более эффективную, чем раньше. Исследователь пояснил, что этот материал обладает высокой теплопроводностью, хотя и является электроизолятором. Полякам удалось разработать технологию производства нитрида алюминия, позволяющую получать материалы с более высокой теплопроводностью, чем имеющиеся на рынке материалы. Есть вероятность, что он будет использован в датчике для медицинских приложений, разрабатываемом в другом отделе WUT.

Доктор Чупински отметил, что композиты и теплопроводные материалы, над которыми работает его команда, были известны и раньше. Он подчеркивает, что проект ТЕРМЕТ в первую очередь занимается разработкой технологий производства таких материалов. Потому что эксплуатационные свойства зависят от того, как сочетаются материалы или изготавливается деталь.

Проект финансируется Европейским фондом регионального развития в рамках Оперативной программы инновационной экономики.

Источник: http://www.naukawpolsce.pap.com.pl
Фото: Марчин Росиньски / PAP

.

Коэффициент теплопередачи U - по нормам, по расчетам

Каждая перегородка здания имеет свои требования к теплоизоляции. Только дом, построенный в соответствии с техническими регламентами, имеет шанс быть энергоэффективным домом, что в настоящее время является очень важным и желательным свойством зданий. Климатическая ситуация не улучшится, загрязнение воздуха и воды не уменьшится, если только строительство не будет становиться все менее энергозатратным.

Коэффициент теплопередачи U определяет, сколько энергии (выраженное в ваттах) проходит через 1 квадратный метр перегородки (стены, крыша, окна, двери) при разности температур с обеих сторон 1 К (Кельвин). Единицей коэффициента теплопередачи является Вт/(м²·К) . Чем ниже коэффициент U перегородки, тем лучше теплоизоляция перегородки. Как коэффициент его значение не зависит от климатической зоны, влажности и температуры.

Зачем нужно знать перегородки строящегося или реконструируемого дома?

Это одно из необходимых требований для того, чтобы дом соответствовал применимым нормам. С января 2021 года действует третий и последний этап внесенных в 2013 году изменений в технические условия, которым должны соответствовать здания и их расположение. Теплоизоляция наружных стен, крыш, плоских крыш, полов, потолков, окон, дверей адаптирована к реалиям современного строительного метода.

Перегородки типа крыш и плоских крыш, наружных стен, полов по грунту выполняются из различных материалов. Поэтому при проектировании здания нужно рассчитывать U-факторы для каждой из этих перегородок с учетом параметров и толщин отдельных строительных материалов, из которых они выполнены.

Подробности и соответствующие значения для расчета коэффициента теплопередачи можно найти в стандартах PN-EN ISO 6946: 2017-10 «Строительные компоненты и строительные элементы.Термическое сопротивление и коэффициент теплопередачи. Метод расчета. «И PN-EN ISO 13370:2017-09 «Тепловые характеристики зданий. Теплопередача через грунт. Методы расчета».

Что касается столярных изделий, то при выборе окон и входных дверей необходимо получить информацию об их коэффициенте теплопередачи от производителя.

.

Смотрите также