Реагенты глушения для скважин


Жидкости для глушения скважин

+7(843) 212 56 21 [email protected]

Глушение скважины проводится для капитального или текущего ее ремонта, прекращения неконтролируемых выбросов пластового флюида — смеси нефти, газа или воды. Для этого создается противодавление со стороны скважины на пласты горных пород. Для этого используются специальные жидкости глушения.

Важен правильный подбор жидкостей глушения. Они должны быть взрыво- и пожаробезопасными, соответствовать геолого-техническим условиям конкретной скважины, не должны оказывать негативное влияние на скважинное оборудование. Жидкости глушения также должны иметь нужную плотность, быть удобными в применении и сохранять свои свойства при разных температурах.

При глушении скважин следует строго соблюдать технологию процесса. Нарушения могут привести к проблемам, решение которых затратно и трудоемко: • газонефтеводопроявления (ГНВП)  — нерегулируемый выброс в скважину пластовых флюидов из продуктивного пласта в скважину; • ухудшение фильтрационно-емкостных свойств; • долгий выход скважины на режим. ООО «Синергия Технологий» осуществляет комплексный подход к глушению скважин: 1) изучение характеристики скважины и продуктивного пласта, 2) моделирование в специальном программном обеспечении процесса глушения,

3) подбор подходящих реагентов для глушения: блокирующие составы, солевой состав «Титан», гидрофобизатор «Гидросил»

4) адаптация их в собственной лаборатории под потребности клиента, 5) производство и фасовка необходимого количества, 6) доставка на скважину в кратчайшие сроки, 7) контроль процесса глушения.

На каждом из этапов технологи, геологи, инженеры готовы обеспечить техническую поддержку.

synergytechnology.ru

реагент-добавка к жидкости для глушения скважин

Изобретение относится к области нефтяной и газовой промышленности, в частности к реагентам, используемым в качестве добавки к технологическим жидкостям, в том числе к жидкостям для щадящего глушения скважин, преимущественно к минерализованным (солевым системам). Технический результат - обеспечение «щадящего» глушения, то есть при добавлении реагента в солевые - минеральные растворы обеспечивается их хорошая гидрофобизирующая и деэмульгирующая способность, низкое межфазное натяжение, устойчивость растворов к высаливанию и коагуляции, в том числе в высокоминерализованных растворах. Реагент-добавка содержит катионное поверхностно-активное вещество - четвертичное аммониевое соединение, характеризующееся следующей общей структурной формулой:

где R1 - алкил C8 -C18, R2 - СН3, -С2 Н5, R3 - Сl, или Вr, или -SO4 СН3, причем реагент-добавка содержит смесь четвертичных аммониевых соединений со следующим химическим составом и со следующим их количественным содержанием в смеси, мас.%: соединение (I) с R1 - C8h25 0,1-10, соединение (I) с R1 - C10h31 1-20, соединение (I) с R1 - С12Н23 30-70, соединение (I) с R1 - C14h37 5-30, соединение (I) с R1 - C16h41 1-20, соединение (I) с R1 - C18h45 0,1-5. 2 табл.

Изобретение относится к нефтяной и газовой промышленности, в частности к реагентам, используемым в качестве добавки к технологическим жидкостям, в том числе к жидкостям для щадящего глушения скважин, преимущественно к минерализованным (солевым системам).

Каждая эксплуатационная скважина, как известно, многократно (не реже одного раза в год) подвергается глушению с целью проведения спуска в скважину насосно-компрессорного оборудования, подземных ремонтов, смены насоса, промывки забоя от загрязнений и т.п. В этих условиях повышение качества глушения для проведения ремонтных работ приобретает исключительную важность.

В настоящее время наиболее широкое применение нашли технологические жидкости для глушения на водной основе, представляющие собой технические и пластовые воды, растворы минеральных солей (NaCl, CaCl 2, MgCl2, CaBr2 и прочее). Однако использование указанных известных водных растворов приводит, как правило, к ряду негативных последствий в призабойной зоне пласта (ПЗП), а именно: образованию водонефтяных эмульсий, набуханию глинистых материалов породы, глубокой пропитке водой ПЗП, вплоть до образования водной блокады. Все это приводит к значительному увеличению времени выхода скважины на рабочий режим после операций глушения и, как следствие, к потерям в добыче нефти.

Также известен ряд сложных составов для глушения скважин, в рецептуру которых входят четвертичные аммониевые соединения (Патент РФ № 2246609, кл. Е21В 43/12, опубл. 2005 г.; Патент РФ № 2173772, кл. Е21В 43/26, опубл. 2001 г.). Указанные составы частично решают задачу эффективного глушения скважин и сокращают время выхода скважины на режим работы после операций глушения.

Однако указанные известные составы, содержащие в своей основе четвертичные аммониевые соединения, сложны в приготовлении, а содержащийся в композиции полисахарид, в отсутствие деструкторов, негативно влияет на проницаемость призабойной зоны пласта, и поэтому не всегда обеспечивается быстрый выход скважины на режим добычи после проведения операций глушения.

Известен реагент-добавка к жидкостям для глушения скважин - катионное поверхностно-активное вещество (ПАВ) марки ИВВ-1 (по ТУ 2482-006-48482528-99), представляющий собой гидрофобизатор, получаемый путем конденсации алкилдиметиламина и бензилхлорида с общей структурной формулой: где R=С10-C18.

Однако жидкости для глушения скважин, приготовленные с использованием указанного известного реагента, не отличаются высокой эффективностью.

Наиболее близким к предлагаемому техническому решению по назначению является реагент-добавка к жидкости для глушения скважин - катионное ПАВ марки Нефтенол ГФ (по ТУ 2484-035-17197708-97), представляющий собой 50%-ный водный раствор четвертичных аммониевых солей - продуктов квартенизации третичных алкилдиметиламинов с алкильным радикалом C12-C18 и бензилхлорида.

Недостатком указанного известного реагента является также невысокая эффективность и низкая стойкость к солевой агрессии, приводящая к частичному высаливанию реагента из растворов минеральных солей, особенно в высокоминерализованных жидкостях глушения повышенной плотности.

Кроме того, этот известный реагент обладает ограниченной деэмульгирующей способностью из-за недостаточно низкого значения межфазного натяжения. Технический результат, достигаемый предлагаемым изобретением, заключается в создании эффективного реагента, обеспечивающего «щадящее» глушение, то есть при добавлении заявляемого реагента в солевые (минеральные) растворы обеспечивается их хорошая гидрофобизирующая и деэмульгирующая способность, низкое межфазное натяжение, устойчивость растворов к высаливанию и коагуляции, в том числе в высокоминерализованных растворах.

Поставленный технический результат обеспечивается предлагаемым реагентом-добавкой к жидкости для глушения скважин, содержащим катионное поверхностно-активное вещество ПАВ - четвертичное аммониевое соединение, при этом новым является то, что указанное четвертичное аммониевое соединение характеризуется следующей общей структурной формулой:

где R1 - алкил С8 -С18;

R2 - СН3 , -С2Н5;

R3 - Сl, или Br, или -SO4Ch4,

причем реагент-добавка содержит смесь четвертичных аммониевых соединений со следующим химическим составом и со следующим их количественным содержанием в смеси, мас.%:

соединение (I) с R1 - С8Н17 0,1-10
соединение (I) с R1 - С10h31 1-20
соединение (I) с R 1 - С12Н25 30-70
соединение (I) с R1 - С14Н29 5-30
соединение (I) с R1 - С16h43 1-20
соединение (I) с R1 - C18h47 0,1-5

Указанный технический результат достигается за счет следующего.

Благодаря использованию в качестве реагента-добавки к жидкости для глушения скважины предлагаемой смеси четвертичных аммониевых соединений указанной общей формулы, обеспечивается хорошая гидрофобизирующая способность жидкости для глушения, ее повышенная деэмульгирующая способность в результате низкого межфазного натяжения на границе с нефтью и высокая стойкость к солевой агрессии.

Полученный результат может быть объяснен с учетом следующих факторов. Первое - выбор в качестве четвертичных алкиламмонийных соединений соединения заявляемой структурной формулы (то есть в химической формуле отсутствует бензильный радикал), и второе - смесь четвертичных алкиламмонийных соединений, которая и является заявляемым реагентом-добавкой, представлена широкой композицией химических компонентов (из шести компонентов) с разной молекулярной массой и разной длиной самого длинного алкильного радикала (R1). Вероятно отсутствие в химической формуле у заявляемого реагента бензильного радикала, который имеет, как известно, существенно больший объем по сравнению с метильным или этильным радикалом, облегчает сольватацию катиона аммония, что повышает растворимость предлагаемого реагента в водно-солевых композициях, повышая стойкость реагента к высаливанию и понижая межфазное натяжение.

С другой стороны, известно, что свойства ПАВ существенно зависят не только от их химической природы, но и (в одном гомологическом ряду) от размеров молекулы (молекулярной массы). Как правило, низкомолекулярные катионные ПАВ обладают низким межфазным натяжением, но являются хорошими деэмульгаторами, хорошо растворяются в водно-солевых растворах, а с повышением молекулярной массы нарастает гидрофобизирующая способность, но уменьшается деэмульгирующая способность, увеличивается межфазное натяжение и заметно снижается растворимость в минеральных растворах. Использование в качестве реагента-добавки для жидкостей глушения широкой композиции (смеси) катионных ПАВ (шесть компонентов) заявляемой химической структуры с различной длиной алкильного радикала R1 (разной молекулярной массы) обеспечивает системность свойств за счет синергетического (взаимного усиления) эффекта отдельных компонентов композиции (смеси). И как оказалось, благодаря этому у жидкости для глушения, в которую добавлен этот реагент, обеспечивается хорошая гидрофобизирующая и деэмульгирующая способность, низкое межфазное натяжение, устойчивость композиции к высаливанию и к коагуляции в солевых, в том числе и в высокоминерализованных растворах.

Приготовление заявляемого реагента-добавки можно проводить двумя вариантами.

По первому варианту, берется готовая промышленно выпускаемая смесь третичных аминов, либо смесь предварительно готовится путем смешения третичных алкилдиметиламинов R1N(Ch4)2 с необходимым количественным распределением компонентов по длине радикала R1 (С8; С10; C 12; С14; C16; C18). Затем по известным методикам, изложенным в источнике: А.А.Абрамсон, Л.П.Зайченко, С.Ф.Файнгольд // Поверхностно-активные вещества. Ленинград, «Химия», 1988 год, проводится алкилирование третичного амина любым алкилирующим агентом (галоидным метилом или этилом - Ch4Cl, Ch4Br, Ch4 СН2Br, СН3СН2Cl, или диметилсульфатом - (СН3)2SO4) с образованием заявляемой композиции четвертичных алкиламмонийных соединений.

Например, смесь третичных аминов фирмы КАО Chemical в количестве 100 г с фактическим распределением компонентов, мас.%: C8h27N(Ch4)2 - 0,3, C10h31N(Ch4)2 - 4,2, С12Н25N(СН3)2 - 65, C14h39N(Ch4)2 - 22, C16h43N(Ch4)2 - 7,8,

C18h47N(CH 3)2 - 0,7, растворяли в 150 г водного 50%-ного изопропилового спирта и по вышеуказанной известной методике проводили алкилирование третичных аминов в указанной смеси 57,0 г диметилсульфата - (СН3)2SO4. В результате получили предлагаемый реагент-добавку в количестве 157 г в виде раствора в 150 г водного изопропилового спирта следующего компонентного состава, мас.%:

По второму варианту предлагаемый реагент-добавка может быть также приготовлен простым смешением готовых компонентов - четвертичных алкиламмонийных соединений, в требуемых пропорциях. Т.е. для этого сначала готовятся по отдельности четвертичные алкиламмонийные соединения необходимого химического состава и химической формулы (методика их приготовления приведена в первом варианте), которые затем смешиваются в заявленном соотношении.

Предлагаемый реагент может использоваться в любой товарной форме, подходящей для введения в жидкость глушения: в сухом виде, причем как индивидуально, так и в смеси с другими реагентами; или в виде раствора в воде; в низкомолекулярных спиртах; в гликолях и тому подобное.

Далее с использованием полученных заявляемых реагентов готовили жидкости для глушения скважин. Для этого в солевой раствор различной плотности вводили заявляемую смесь четвертичных алкиламмонийных соединений и хорошо перемешивали.

Испытания показали, что предлагаемый реагент в указанную жидкость целесообразно вводить в количестве приблизительно 0,1%.

В ходе лабораторных испытаний определяли следующие свойства жидкостей глушения, в которые был введен заявляемый реагент:

- межфазное натяжение на границе керосин - минеральный раствор, содержащий реагент-добавку, мН/м;

- время разрушения эмульсии керосин - минеральный раствор, содержащий реагент-добавку, мин;

- гидрофобизирующую способность (смачиваемость после обработки минеральным раствором, содержащим реагент-добавку, кварцевого песка);

- устойчивость к высаливанию при температуре 20°С.

Межфазное натяжение на границе керосин - раствор CaCl2 (минеральный раствор) с реагентом-добавкой определяли по известной методике с использованием столагмометра марки СТ-1.

Время разрушения эмульсии керосин - минеральный раствор с реагентом-добавкой, определяли следующим образом: равные объемы керосина и минерального раствора по 50 мл интенсивно встряхивали в колбе объемом 250 мл в течение 5 минут, образовавшуюся эмульсию переливали в мензурку и засекали время полного расслоения.

Гидрофобизирующая способность (оценка смачиваемости) пористой среды осуществлялась на установке для измерения кинетики впитывания. В качестве насыпной пористой среды использовался кварцевый песок фракции 0,1-0,2 мм. Выдержка пористой среды в исследуемом растворе при атмосферном давлении и температуре ~20°С составляла 24 ч. В процессе исследований оценивалась гидрофобизирующая способность минерального раствора, представляющего собой раствор NaCl плотностью 1,123 г/см3 с добавлением в него 0,1% по массе предлагаемого реагента. В качестве базы для сравнения гидрофобизирующих свойств жидкостей для глушения, приготовленных с использованием заявляемых реагентов, приведены скорости самопроизвольного впитывания воды в необработанный гидрофильный кварцевый песок. Чем ниже скорость самопроизвольного впитывания воды, тем выше гидрофобизирующая способность жидкости.

Устойчивость к высаливанию определяли визуально после растворения реагента-добавки в солевом растворе в массовой концентрации 0,1%.

Данные о количественном содержании компонентов в предлагаемом реагенте-добавке и известной добавке по прототипу приведены в таблице 1.

Данные о свойствах минеральных растворов, в которые добавлен предлагаемый реагент-добавка (жидкости для глушения) и известная добавка по прототипу, приведены в таблице 2.

Данные, приведенные в таблицах 1 и 2, показывают, что жидкость для глушения, которая приготовлена с использованием предлагаемого реагента-добавки, имеет следующие преимущества перед известными:

- ею обеспечивается хорошая гидрофобизирующая способность (скорость впитывания воды кварцевым песком, обработанным этой жидкостью, приблизительно в 2 раза ниже, чем у прототипа);

- она имеет существенно более высокую деэмульгирующую способность (эмульсия разрушается в течение 1 минуты против 24 часов по прототипу);

- она характеризуется низким межфазным натяжением (на четверть ниже, чем у прототипа);

- имеет высокую устойчивость (полная растворимость) композиции к высаливанию и коагуляции в солевых, в том числе в высокоминерализованных растворах.

Таким образом, заявляемый реагент является композицией, характерирующейся комплексными (системными) свойствами, придаваемыми им жидкостям для глушения: хорошей гидрофобизирующей и деэмульгирующей способностью, низким межфазным натяжением, высокой устойчивостью композиции к высаливанию и коагуляции в солевых, в том числе в высокоминерализованных растворах.

Таблица 1
Данные о количественном содержании компонентов в предлагаемом реагенте-добавке и в известной добавке по прототипу
№ № опыта Компоненты реагента: Четвертичные аммониевые соединения общей формулы
Количество компонентов в мол.%, с R1 R2
C8h25 С10Н21 C12h33 C14h37 С16Н31 С18Н35
Для предлагаемого реагента
10,3 4,865 227,8 0,7Ch4 SO4CH 3
210 2030 2015 5Ch4 Cl
3 0,34,8 6522 7,80,7 Ch4Br
4 0,34,8 6522 7,80,7 C2H5 Cl
5 10 2030 2015 5C2H 5Br
6 Нефтенол ГФ

ФОРМУЛА ИЗОБРЕТЕНИЯ

Реагент-добавка к жидкости для глушения скважин, содержащий катионное поверхностно-активное вещество ПАВ - четвертичное аммониевое соединение, отличающийся тем, что указанное четвертичное аммониевое соединение характеризуется следующей общей структурной формулой:

где R1 - алкил C8-C 18;

R2 - Сh4, -C2 H5;

R3 - Сl или Вr, или -SO 4Ch4,

причем реагент-добавка содержит смесь четвертичных аммониевых соединений со следующим химическим составом и со следующим их количественным содержанием в смеси, мас.%:
соединение (I) с R1 - C8h25 0,1-10
соединение (I) с R1 - C10h31 1-20
соединение (I) с R 1 - C12h33 30-70
соединение (I) с R1 - C14h37 5-30
соединение (I) с R1 - C16h41 1-20
соединение (I) с R1 - C18h45 0,1-5

www.freepatent.ru

Глушение скважин

Глушение скважин как в бурении, так и при капитальном (текущем) ремонте скважин необходимо для  создания достаточного противодавления на продуктивный пласт, при котором поступление флюида из коллектора исключено. Раствор глушения обычно представляет собой соляной раствор либо пресную воду . Раствор глушения для ТКРС может быть на водной или нефтяной основе.

Общая информация о глушении

При проведении некоторых работ по ТКРС используется циркулирующая в скважине жидкость. При бурении раствор выносит шлам, охлаждает долото и поддерживает стенки ствола скважины до установки обсадной колонны.

Рис. 1. ЦА 320 на базе КаМАЗ повсеместно используемый для глушения скважин.

При ТКРС циркулирующая жидкость может выносить песок из скважины, предотвращать выбросы, и обеспечивать гидравлическую мощность для скважинных приборов, а также выполнять функцию бурового раствора. Обрушивающиеся частицы закупоривают тонкие каналы, ухудшая проницаемость породы, поэтому нефть и газ уже не могут с легкостью проникать в скважину. Жидкость оказывает давление на боковые стенки ствола скважины, точно так же как и вода в пластиковом бассейне давит на его боковые стенки изнутри.

Бригады ТКРС часто используют пластовую соленую воду, так как она имеется в наличии и не наносит повреждения пласту. В то время как другие жидкости могут привести к обрушению частиц пород со стенок ствола. В качестве добавок могут служить сульфат бария (барит) и глина. Добавление измельченной глины увеличивает вязкость жидкости, т.е. заставляет ее течь медленнее. Частицы глины также обволакивают или «зашпаклевывают» стенки ствола скважины, как шпаклевка для отделочных работ.

Таблица 1. Классификация жидкостей глушения

В идеале, для проведения КРС скважину глушить не нужно. Если бы изначально колонна для освоения позволяла бы изолировать ствол скважины ниже пакера с помощью пробки, спускаемой на кабеле , тогда НКТ выше пакера можно было бы заменить без нарушения пласта. Это называется КРС верхней части ствола. В качестве альтернативного варианта для капремонта скважины под давлением можно использовать гибкие трубы (колтюбинг) или специальные установки для СПО под давлением. В обоих этих случаях продуктивный пласт не будет подвержен потенциальному повреждению глушением скважины.

Однако, часто скважину приходится глушить, и здесь важность пачек глушения выходит на первый план. Чтобы заглушить скважину, необходимо закачать в скважину жидкость с более высоким гидростатическим давлением, чем пластовое давление. Поскольку скважина проектировалась для того, чтобы добывать нефть, перфорации или освоение с открытым стволом должны иметь проницаемость, чтобы таким образом жидкость проникала в пласт. Хорошая жидкость для КРС должна быть чистой, отфильтрованной и не содержать твердой фазы. Поэтому она не может образовывать фильтрационную корку и будет быстро уходить в пласт. Для предотвращения поглощения жидкости в пласт используют пачки глушения. Неэффективная пачка глушения не только создаст потенциальные проблемы с контролем НГВП, но также может повредить перфорации и пласт, закупоривая их нерастворимыми твердыми частицами.

Пачка глушения или любой химический реагент в составе жидкости для ТКРС должен извлекаться обратно после проведения ТКРС, когда скважину переводят обратно в режим эксплуатации; или он должен разрушаться потоком углеводородов или обработкой водой или кислотой. Любые инородные твердые частицы в составе жидкости для ТКРС несут опасность остаться в пласте навсегда. Коллекторы с широким диапазоном проницаемости особенно подвержены неэффективной очистке. По возможности скважина не должна глушиться задавливанием в пласт содержимого НКТ, так как при этом вся грязь и отложения внутрри НКТ проникнут в пласт, нанося непоправимый вред пласту-коллектору.

Скважины с низким коэффициентом продуктивности (Кпрод) более подвержены повреждению, чем скважины с высоким Кпрод. Для глушения этих скважин требуются специальные пачки глушения, чтобы не снижать поглощение до эксплуатационно приемлемого уровня, но предотвращать повреждение. Скважины, на которых проводился гидроразрыв, сильно подвержены повреждению:

• Отмечается снижение Кпрод на 40%;

• Они требуют другого подхода. В некоторых районах закачивают пачку 20/40 карболитового расклинивающего агента в интервал гидроразрыва, а потом сверху закачивают пачку крупнозернистого пластозакупоривающего материала.

Основное предназначение жидкости глушения заключается в обеспечении необходимого противодавления на продуктивный пласт, исключающего ее самопроизвольный выброс и гарантирующего сохранение коллекторских свойств прискважинной зоны.

Определение плотности жидкости глушения

Одноцикличное глушение

Для глушения скважин за один цикл через насосно-компрессорные трубы, спущенные до забоя, с полной заменой скважинной жидкости и продавливанием жидкости глушения в пласт, необходимая ее плотность рассчитывается по формуле:

где П — коэффициент безопасности работ, учитывающий возможность повышения пластового давления в призабойной зоне скважины в период ремонта; Рпл — пластовое давление, Па; hиз — отметка положения искусственного забоя по вертикали скважины, м; lиз — отметка положения искусственного забоя по стволу скважины, м; α — средний зенитный угол ствола скважины, град.

Многоцикличное глушение

Количество циклов глушения для фонтанных скважин с длиной лифта до интервала перфорации — один, во всех остальных случаях количество циклов определяется отношением глубины искусственного забоя и глубиной спуска подземного оборудования:

  • Для скважин с глубиной спуска насоса, хвостовика или НКТ, составляющей более половины длины ствола скважины до интервала перфорации — 2 цикла.
  • Для скважины с глубиной спуска насоса, хвостовика или НКТ, составляющей менее половины длины ствола скважины до интервала перфорации — 3 и более циклов.

Для глушения скважин механического фонда в условиях отстоя необходима частичная замена скважинной жидкости в интервале от устья до подвески насоса. В этом случае плотность закачиваемой за один цикл жидкости рассчитывается по формуле:

где                                                         ,

hтр — отметка глубины спуска НКТ или насоса, м; ρн — плотность жидкости под насосом.

При многоцикличном глушении скважин механического фонда при отсутствии необходимой приемистости (в скважинах с низкой проницаемостью менее 0,05 мкм2) или если действующими инструкциями запрещается задавливать скважинную жидкость в пласт, плотность жидкости глушения при втором и последующих циклах глушения определяется по формуле:

Сначала жидкость глушения замещают до глубины спуска насоса, а затем через расчетное время повторяют глушение. Расчетное время Т определяют по формуле Т = H/v, где Н — расстояние от приемной сетки насоса до забоя скважины, м; v — скорость замещения жидкостей, м/с (ориентировочно можно принять 0,04 м/с).

Согласно Правил безопасности в нефтяной и газовой промышленности плотность жидкости глушения должна определяться из расчета создания столбом жидкости глушения гидростатического давления в скважине, превышающего пластовое давление на величину:

  • 10-15% для скважин глубиной до 1200 м (интервалов от 0 до 1200 м), но не более 1,5МПа;
  • 5-10% для скважины глубиной до 2500 м (интервалов от 1200 до 2500 м), но не более 2,5 МПа;
  • 4-7% для скважин глубиной более 2500 м (интервалов от 2500 и до проектной глубины),но не более 3,5 МПа.

Пластовое давление должно быть замерено не ранее, чем за 3 месяца до начала ремонта скважины. При получении удельного веса жидкости γ= 0,86 -1,0, рассчитанного по формуле, ремонтируемая скважина должна быть заглушена дегазированной нефтью, или пресной водой.

Определение объёма жидкости глушения

Объем жидкости глушения скважины, необходимой для глушения и технологических нужд при текущем ремонте скважин определяется:

V = 1,2 * Vскв + Vдол,

где Vскв — объем жидкости в скважине, определяемый объемом эксплуатационной колонны, м3; Vдол — объем жидкости для долива скважин в процессе ведения работ, м3. Объем доливной емкости должен быть не менее 6 м3, а объем жидкости долива не должен быть не меньше 4 м3.

Объем эксплуатационной колонны определяется в зависимости от длины ствола скважины, ее диаметра и толщины стенки колонны:

Vэк = hтз * π * dвн2/4,

где hтз — глубина текущего забоя; dвн — внутренний диаметр эксплуатационной колонны.

Кроме того, на период ремонта скважина должна быть обеспечена запасом жидкости соответствующей плотности в количестве не менее двух объемов скважины на солерастворный узел.

Технология глушения

Расстановка и монтаж оборудования

Агрегаты должны быть расстановлены на расстоянии не менее 10 м от устья скважины и таким образом, чтобы их кабины не были обращены к устью. Агрегаты устанавливаются с подветренной стороны и расстояние между ними должно быть не менее 1 м. Выхлопные трубы должны быть оборудованы глушителями и искрогасителями. Не допускается установка агрегата под линии электропередач. Нагнетательные линии от агрегатов должны быть оборудованы обратными клапанами, тарированными предохранительными устройствами заводского изготовления и манометрами. Отвод от предохранительного устройства на насосе должен быть закрыт кожухом и выведен под агрегат.

Рис. 2. Расстановка наземного оборудования при глушении скважин.

Монтаж нагнетательного трубопровода должен производиться из труб и стальных шарнирных соединений высокого давления. Трубы нагнетательной линии раскладываются от насосных агрегатов к устью скважины:

  • В местах соединений производится их укладка на деревянные выкладки;
  • Проверяется исправность резинового уплотнительного элемента на ниппеле трубы;
  • Ниппель направляется в муфту соседней трубы и наживляется гайка БРС в направлении по часовой стрелке;
  • Ударами кувалды производится закрепление гайки БРС;
  • Для возможности сборки линий в различных плоскостях в отношении труб друг к другу применяются стальные шарнирные соединения высокого давления, соединение которых с трубами аналогична приведенному выше.

Рис. 3. Схема быстроразъёмного соединения.

Испытание на герметичность

После сборки линий производится испытание линий на герметичность:

  • Закрывается задвижка на фонтанной арматуре;
  • Удаляется персонал из опасной зоны;
  • По команде руководителя работ начинается нагнетание жидкости в напорные линии до 1,5-кратного значения ожидаемого рабочего давления (указано в плане работ);

Линии считаются герметичными, если в течение 3-х минут давление опрессовки не падает. В случае обнаружения пропусков, давление снизить до атмосферного, произвести устранение пропусков и повторить опрессовку снова.

Закачивание раствора глушения

Глушение скважин может производиться прямым и обратным способом. При прямом способе, жидкость глушения закачивается через НКТ, при обратном — в затрубное пространство.

Процесс глушения (в пределах одного цикла) должен быть непрерывным. Прокачивание необходимого объёма жидкости глушения должно быть непрерывным с поддерживанием противодавления жидкости на линии выхода жидкости из скважины в пределах 2-3 МПа. При поглощении жидкости глушения пластом-коллектором необходимо уменьшить противодавление на пласт, регулируя его в диапазонах коэффициента К и снизить противодавление на линии выхода жидкости до минимума, производя глушение на ёмкость.

При закачивании необходимо наблюдать за показаниями манометров и герметичности нагнетательных линий. Не допускается нахождение персонала в зонах близлежащих к нагнетательным линиям.

Если производится глушение в два и более циклов, то скважина закрывается и ставится на отстой на время указанное в плане. Перерыв между циклами глушения должен составлять:

  • Для колонны диаметром 168 мм — не менее 8 ч;
  • Для колонны диаметром 146 мм — не менее 12 ч.

При глушении скважины в 2 цикла (для скважин с глубиной спуска насоса, хвостовика или НКТ, составляющей более половины длины ствола скважины до интервала перфорации) объем жидкости глушения должен быть для первого цикла не менее величины полного объема эксплуатационной колонны от глубины спуска насоса (башмака хвостовика или НКТ) до забоя.

Для второго цикла не менее полного объёма эксплуатационной колонны до глубины спуска насоса или хвостовика с учетом водоизмещения НКТ. Без наличия этого объема на скважине начинать глушение запрещается.

Перед глушением, кроме случаев, связанных с негерметичностью лифтов НКТ, производится сбитие сбивного клапана путём сбрасывания лома.

Объём жидкости глушения для 1-го цикла глушения определяется по формуле:

V1 цикла = (Н — Нгно)*Sэк,

где Н — глубина текущего забоя скважины, м; Нгно — глубина спуска подземного оборудования, м, Sэк — площадь эксплуатационной колонны по внутреннему диаметру, м2.

Объём жидкости глушения для 2-го цикла глушения определяется по формуле:

V2 цикла = (Нгно * Sэк) — Vводоизм,

где Vводоизм — водоизмещение НКТ.

Признаком окончания глушения скважины является соответствие плотности жидкости выходящей из скважины плотности жидкости глушения, при этом объем прокаченной жидкости глушения должен быть не менее расчетной величины.

Замер плотности жидкости глушения

Контроль плотности раствора является неотъемлемой частью процесса глушения скважин. Для замера плотности используется ареометр. Чтобы замерить плотность с помощью ареометра необходимо:

  • Произвести отбор пробы жидкости глушения, заполнить ведерко водой;
  • Отвернуть нижнюю часть ареометра;
  • Налить в нее пробу;
  • Соединить верхнюю и нижнюю часть ареометра;
  • Опустить ареометр в ведерко;
  • Определить по риске погружения на шкале прибора плотность жидкости глушения;

Плотность жидкости глушения должна соответствовать плотности, указанной в согласованном плане работ.

Стравливание давления из скважины

Стравливание давления после окончания глушения происходит по следующей последовательности:

  • Останавливается скважина.
  • На всех задвижках промывочного оборудования необходимо проверить наличие надписей с указанием направления открытия или закрытия задвижки.
  • Производится разрядка скважины открытием задвижки.
  • Проверяется исправность запорной арматуры.
  • Открытие задвижки осуществляется вращением (поворотом) штурвала в направлении указанном на штурвале (в основных случаях — в направлении против часовой стрелки).

После того как скважина заглушена (давление в трубном и затрубном пространстве равны нулю), можно приступать к монтажу подъёмного агрегата и к самому ремонту скважины.

www.geolib.net

О глушении скважин

+7(843) 212 56 21 [email protected]

Глушение скважин – технологический процесс, цель которого – прекращение добычи пластового флюида. Для этого в скважину погружают специальные жидкости глушения, которые создают необходимое противодавление на пласт.

Реагенты для глушения скважин должны отвечать требованиям: — инертность к пластовым породам и совместимость с пластовыми флюидами, — исключение необратимой кольматации пласта твердыми частицами, — ингибирующее действие на глинистые частицы, — обеспечение гидрофобизации поверхности коллектора и снижение капиллярных давлений в порах пласта, — исключение образования стойких водонефтяных эмульсий, — низкое коррозионное воздействие на оборудование в скважине,

— технология глушения должна обеспечивать возможность вывод скважины в рабочий режим в будущем.

Жидкости глушения условно делят на две группы: ◦ на водной основе – пены, пресные и пластовые воды, глинистые растворы и растворы минеральных солей, гидрогели и прямые эмульсии

◦ на углеводородной основе – загущенная нефть, обратные эмульсии с водной фазой до 70%

Для определения технологии глушения необходимо принять ряд решений: ◦ состав основной жидкости глушения и добавки; ◦ необходимость применения блокирующей жидкости.

◦ количество циклов глушения

Добавки к водным растворам глушения Для снижения негативного влияния водных растворов жидкостей глушения на ФЕС пласта используют различные добавки к жидкостям глушения : ◦ Ингибиторы солеотложений; ◦ Ингибиторы коррозии; ◦ Гидрофобизаторы и ингибиторы набухания глин;

◦ Деэмульгаторы.

Выбор количества циклов глушения Глубина спуска скважинного оборудования определяет количество циклов глушения – один или два. В один цикл глушатся скважины при следующих условиях: ◦ насосно-компрессорное оборудование находится не выше 100 м интервала перфорации; ◦ интенсивно эксплуатируемая скважина с невысокой обводненностью и ЭЦН, установленным выше 100 м от интервала перфорации. Скважина должна обладать высокой приемистостью и возможностью продавки жидкости в пласт (до 5%)

◦ значительна обводненность флюидов при условии оставления скважины на отстой для оседания жидкости глушения. При этом жидкость глушения должна обладать завышенной плотностью.

В два цикла глушат скважины с насосным оборудованием, расположенным выше 100 м над интервалом перфорации, когда закачка жидкости глушения на поглощение невозможна.

Направление глушения — прямой и обратный способы Наиболее часто для глушения скважин применяют прямой способ – закачка жидкости глушения в трубное пространство. Это наиболее быстрый метод. При прямом способе развивается наименьшее давление, нет противодвижения закачиваемой жидкости глушения и всплывающей скважинной жидкости.

В отдельных случаях глушение производится обратным способом – через закачивание жидкости глушения в затрубное пространство. Например, при органических отложениях в колонном пространстве во избежание закупорки насосного оборудования.

Правильный выбор реагентов и способов глушения, расчет пластового давления, позволяет эффективно произвести консервацию скважины и обеспечивает возможность ее последующей разработки.

ООО «Синергия Технологий» производит реагенты для глушения скважин: • Блокирующий состав на углеводородной основе «Унисолт» • Полимерный блокирующий состав «Флок-СТ» марка А • Эмульсионный блокирующий состав «Эксимол» • Солевой состав «Титан»  • Гидрофобизатор «Гидросил»

synergytechnology.ru


Смотрите также