Сухое бурение скважин


Сухое бурение скважин

Под сухим бурением скважин подразумевается технология, в которой не используется прямая или обратная промывка. В результате получается не размытый водой ровный срез, из которого можно получить достоверные данные о породах, их составе. Именно поэтому часто используется такой метод в геологических изысканиях, в разработке месторождений.

Получил он также широкое применение в частном секторе для создания скважин на песок. То есть из водоносного слоя, расположенного обычно на глубине всего в несколько десятков метров. В этом случае не будет никакой грязи, и обойдется довольно дешево. Малогабаритные самоходные установки можно использовать даже в труднодоступных местах. Выделяют разные виды сухого бурения скважины:

  • Вращательное. Чаще всего используется шнековый способ, когда грунт достается из земли специальным транспортером, при этом не происходит раздробление элементов, так что промывка не требуется.
  • Ударно-канатное. Отличается надежностью и невысокой стоимостью. Не требует больших затрат и широко применяется в области организации водоснабжения.
  • Ударное на сплошных штангах. Есть три подвида, каждый из которых отличается особенности строения и областью применения. Используются по большей части для нефтяных скважин большой глубины и диаметра

arendaspectehniki-msk.ru

Технология бурения скважин: мокрое и сухое бурение

Бурение скважин может производиться двумя способами - мокрое бурение и сухое бурение. Бурение широко применяется в промышленности, строительстве, геологических изыскания, бурение скважин необходимо для водоснабжения и водопонижения, выполнения взрывных работ, устройстве свайных фундаментов и множестве других отраслей народного хозяйства.

Сухое бурение считается менее эффективным, так как приводит к быстрому износу бурового оборудования, а образование пыли в значительных количествах ухудшает условия труда, создает дискомфорт и может быть опасно для здоровья. По этой причине сухое бурение не применяется в помещениях закрытого типа.

Мокрое бурение имеет существенные преимущества благодаря тому, что износ инструмента и оборудования за счет охлаждения, снижает сопротивляемость породы и пылеобразование, создает нормальные условия работы для операторов. Мокрое бурение повышает производительность более чем на 30%. Однако, в некоторых случаях, например, если бурение производиться при минусовых температурах, зимой, то применение мокрых способов затруднительно и в таких условиях обычно применяют сухое бурение.

Гидравлический способ бурения, или бурение водой, используют, как правило, в не тяжелых суглинках или плывунах. Бурение водой происходит путем нагнетания в скважину мощного потока воды, через специальную колонну труб, вода под давлением размывает забой, и трубы погружаются в грунты. Масса, которая образуется в результате размыва почвенных слоев, выжимается наружу вдоль стенок обсадных труб и извлекается механическим способом. Бурение водой позволяет проходить скважины глубиной до 15 метров, при скорости 1 м/мин. Гидравлическое бурение скважин технология достаточно эффективная, недорогая позволяющая производить работы в крайне сжатые сроки.

Горизонтальное бурение скважин технология «прокол» - это один из передовых современных методов, позволяющий проходить под землей значительные расстояния в горизонтальных направлениях, не нарушая поверхностный слой почвы, асфальтовые и иные покрытия. Метод «бурение прокол» позволяет упрощать проблемы водоснабжения, энергоснабжения, прокладки трубопроводов и коммуникаций в сложных условиях – в крупных городах, на охраняемых территориях, под водоемами, железными и автомобильными дорогами, под сложными участками естественного рельефа. Изначально бурение прокол производится с помощью осуществления прокола грунта с выходом наружу, после этого, при помощи специальных насадок, скважину расширяют до необходимого в конкретном случае диаметра.

Современные методы бурения с каждым годом приобретают все большую актуальность и варианты применения в различных сферах промышленности, строительства и народного хозяйства, постоянно совершенствуются технологии, появляются новые научные разработки и новые виды технического оборудования и инструмента.

Наша компания всегда занимает активную позицию, следит за всеми достижениями науки, технологическими и техническими новинками, постоянно расширяет горизонты возможностей и непрерывно повышает квалификацию своих сотрудников. Обращаясь в нашу компанию, вы можете быть полностью уверены, что любые буровые работы будут выполнены с высочайшим качеством, точно в срок и с ощутимой экономической выгодой!

ugpc.ru

Сухие скважины

Счетно-решающие машины

Как можно было ожидать, широкое применение счетно-решающих машин стало характерной чертой исследований в геологии нефти и газа, причем они используются как при геологических, так и при геофизических работах. Применение счетно-решающих машин в геологии - быстро расширяющаяся область. В конце главы приведены ссылки на некоторые статьи, в которых описаны примеры применения вычислительной техники для решения геологических задач [24]. В любом регионе, где интенсивно проводятся геологические работы, накапливается огромное количество детальных фактических данных, и счетно-решающие машины в этом случае помогают быстро привлечь и обобщить все данные, полученные в самое различное время. Часто фактический материал определенного типа, обработанный с помощью таких машин, может наноситься прямо на карты, что экономит много времени, которое надо было затратить на его сбор и запись. Таким образом иногда удается выявить ряд аномалий, которые не выделяются на картах, построенных в обычных изолиниях. Это в свою очередь способствует выявлению районов, перспективных для дальнейших исследований. Тем не менее, по-видимому, потребуется еще некоторое время для окончательного внедрения вычислительной техники в геологические исследования. Для этого необходимо всячески поощрять публикацию достижений ученых в области применения счетно-решающих машин к решению геологических задач.

Поиски и разведка нефти и газа в акваториях. В последние годы в прибрежных зонах континентальных шельфов всего земного шара открыто много крупных залежей углеводородов. В настоящее время скважины бурятся при глубинах моря до 500 футов, и технические проблемы бурения и эксплуатации залежей нефти и газа в подводных условиях уже в значительной мере решены. В геологическом отношении морское дно в этих зонах является по существу простым продолжением суши или сходно с ней; толща же воды представляет собой особую разновидность поверхностного покрова. Как и на суше, залежи углеводородов здесь могут быть приурочены к соляным куполам, антиклинальным складкам или разрывным нарушениям, а также к стратиграфическим и комбинированным ловушкам¹. При геологических работах в море применяются те же геофизические методы исследований, что и на суше, именно эти методы являются основой для выявления здесь перспективных для поисков залежей аномалий². Иногда оказываются полезными батиметрические карты, отражающие особенности рельефа океанического дна. Они позволяют предполагать существование антиклинальных складок или других структур в подстилающих отложениях. На перспективность района могут в ряде случаев указывать нефте- и газопроявления на поверхности воды. Однако себестоимость нефти и газа, добываемых в водных бассейнах, как правило, в несколько раз выше их себестоимости на суше, и это следует обязательно учитывать при любых оценках перспектив нефтегазоносности акватории³. При морских работах составляются по существу такие же типы глубинных карт, как и при обычных геологических изысканиях на континентах.

Разведочные скважины, при испытании которых не удалось получить промышленных притоков нефти или газа, называются сухими скважинами. Из ежегодно бурящихся на территории США скважин в среднем только одна скважина из девяти оказывается продуктивной, а остальные восемь дают при опробовании отрицательные результаты. Это отношение в различных провинциях изменяется, но, как правило, наибольший процент сухих скважин отмечается в тех регионах, где большинство залежей связано не со структурными, а со стратиграфическими ловушками. Отношение числа сухих скважин к числу продуктивных может здесь достигать 20:1. Рентабельность эксплуатации скважины частично зависит от экономических факторов. Так, часто оставляются как сухие скважины, дебит которых составляет 1-1,5 м³ в сутки, или скважины, дающие вместе с нефтью чрезмерно большое количество воды. Может кроме того считаться непромышленной залежь, где глубина залегания продуктивного горизонта велика или

¹Следует отметить, что соляные купола выявлены в настоящее время и на континентальном склоне, и даже в пределах абиссальных равнин (Мексиканский залив). Однако в геологическом строении континентального склона, контпнентального подножия и абиссальной равнины имеется ряд особенностей, не наблюдающихся ни на суше, ни на шельфе. - Прим. ред.

²Геофизические работы в водных бассейнах, как правило (за исключением, может быть, аэромагнитной съемки), проводятся иначе, чем на суше. Проведение значительной части этих методов в водных бассейнах более эффективно, чем на суше, а себестоимость получаемых нефти и газа ниже. - Прим. ред.

³Последние расчеты, приводимые в американских журналах, опровергают это утверждение. Как установлено, затраты на поиски и разработку залежи нефти и газа в водном бассейне в два, а иногда и в 3-4 раза выше (они возрастают с увеличением глубины водного бассейна), чем на суше. Однако вследствие большей продуктивности скважин в море себестоимость тонны нефти или кубического метра газа ниже себестоимости их добычи на суше. Даже в таких водных бассейнах, как залив Кука, в настоящее время нефть, добываемая в море, дешевле нефти, извлекаемой на суше. - Прим. ред.

высоки эксплуатационные расходы и взнос за сухую скважину¹. Напротив, часто оказывается выгодным эксплуатировать неглубокую скважину, дающую всего несколько сотен литров высококачественной нефти в сутки.

Не следует, конечно, любую оказавшуюся сухой скважину принимать за неудачную. Каждая скважина приносит геологу множество данных, всестороннее изучение которых раньше или позже может стать основой для выбора места заложения новой поисковой скважины. Огромное количество поисковых скважин было заложено на участках, на которых благодаря ранее пробуренным сухим скважинам были выявлены структурные поднятия или наличие стратиграфических ловушек. При этом бурение каждой новой поисковой скважины производилось в надежде, что она окажется удачнее расположенной, вскроет перспективный горизонт на еще более высоких отметках и будет продуктивной. Некоторые поисковые скважины закладывались вблизи пробуренных скважин, которые, хотя и расценивались как сухие, имели нефте- и газопроявления или даже давали небольшие непромышленные притоки. Другие располагались вверх по восстанию слоев от уже имевшихся сухих скважин, вскрывших пласт, с расчетом, что они откроют залежь нефти в выклинивающихся песчаных телах. Иногда поисковые скважины бурились вблизи сухих скважин, заложенных в структурно пониженных участках, но позволяющих предполагать наличие разрывного нарушения. Для того чтобы получить подобные геологические данные, приходится затратить значительные средства, поэтому из каждой пробуренной скважины необходимо извлечь максимум возможной информации. Поскольку при геологических наблюдениях на поверхности земли непосредственно определить местоположение залежей нефти и газа невозможно, используются сведения, полученные при бурении сухих скважин, которые часто приводят к открытиям промышленных скоплений углеводородов.

Скважины могут оказаться сухими по одной из многих причин, причем в ряде случаев, устранив эту причину, удается получить промышленные притоки нефти и газа. На основании всех данных, полученных при бурении скважины, всегда следует постараться установить, почему поисковая скважина оказалась сухой. Это даст возможность правильно выбрать расположение последующей скважины, а также избежать ошибок при оценке другого участка. Ниже рассматриваются некоторые из наиболее обычных факторов, определяющих отсутствие промышленных притоков в скважинах. Безусловно, имеется и множество других причин, которые в комплексе определяют каждую сухую скважину как единственную в своем роде, но чаще, по-видимому, встречаются следующие:

1. Отсутствие ловушки во вскрытых скважиной коллекторах. Чаще всего именно в результате этого скважина оказывается сухой. В свою очередь отсутствие ловушки в месте расположения скважины может быть обусловлено несколькими обстоятельствами:

а) Неправильная стратиграфическая корреляция разрезов приводит к ошибкам при поверхностном или глубинном картировании. Она может быть связана с недостаточным количеством и плохим качеством имеющихся данных, с небрежностью при проведении работ или с непониманием геологической ситуации. В результате закартированные на каких-либо участках структурные поднятия или зоны выклинивания коллекторов бурением не подтверждаются.

¹Прежде чем бурить поисковую скважину, производитель работ может заключить контракт с арендатором прилегающего участка земли. Если поисковая скважина оказывается сухой, то по этому контракту арендатор соседнего участка выплачивает производителю работ обусловленную сумму денег, так называемый «взнос за сухую скважину» (dry hole contribution), поскольку пробуренная скважина выявляет перспективы и соседних земельных участков.

б) В результате ошибок, допущенных по небрежности исполнителя работ, может быть неправильно определена абсолютная высота устья скважины или глубина залегания опорных горизонтов разреза. Это приводит к появлению на картах «антиклинальных структур», существование которых затем опровергается бурением разведочной скважины.

в) Выявляющиеся неожиданно для геолога фациальные замещения коллекторов могут обусловить как наличие, так и отсутствие перспективной для поисков нефти и газа ловушки. Фациальные замещения вызывают также изменения скоростей сейсмических волн, а проявляющиеся в результате этого сейсмические аномалии могут интерпретироваться как структурные. Поэтому на тех площадях, где между поверхностью земли и коллекторским горизонтом неожиданно проявляется фациальное замещение, могут быть закартированы структурные аномалии, отсутствующие в действительности. Зоны фациального замещения можно предвидеть в том случае, если поблизости от введенной в разведку площади уже имеются материалы бурения и хорошо изучено геологическое строение территории, но в новых районах их невозможно установить до тех пор, пока не будет пробурено достаточное количество разведочных скважин.

г) Эрозионный рельеф, связанный с погребенными поверхностями несогласия, может ошибочно интерпретироваться как дизъюнктивные нарушения или как не выраженные на поверхности тектонические структуры. Если эрозионные останцы на поверхности несогласия сложены породами, характеризующимися иной скоростью распространения сейсмических волн по сравнению с перекрывающими их отложениями, то картирование такой поверхности с помощью сейсмических методов не отражает тектонической структуры глубоких горизонтов. В этом случае ошибочность интерпретации сейсмических данных может быть установлена только после того, как будут пробурены скважины и накоплен достаточный опыт глубинного картирования.

2. Отсутствие коллекторов. Даже когда удается выявить благоприятные для поисков нефти и газа структурные формы, иногда оказывается, что породы-коллекторы, развитие которых предполагалось на данной площади, в действительности отсутствуют. Это может быть вызвано следующими причинами:

а) Коллекторы могут замещаться глинистыми отложениями или терять свою проницаемость в результате локального фациального замещения, либо цементации на участке, где расположена разведочная скважина. Кроме того, если проницаемость обусловлена трещиноватостью пород и наличием в них кавернозных полостей, разведочная скважина может не попасть в трещиноватую или кавернозную зону и, следовательно, не обнаружит скопления углеводородов.

б) Если коллектор пересечен разрывным нарушением, разведочная скважина, попавшая в плоскость разрыва, не вскроет этот пласт (см. фиг. 6-34 и 13-2, В).

в) На участке, где расположена разведочная скважина, коллектор может быть уничтожен эрозией, что устанавливается по перерыву в нормальной стратиграфической последовательности напластований, вскрытых скважиной, и наличию несогласия. Когда продуктивная формация полностью размыта в сводовой части куполовидной структуры, но сохранилась на ее обрамлении, а также на ее склонах, говорят о «лысых» структурах¹ (см. фиг. 13-20, В).

г) Когда коллектор не достигнут разведочной скважиной, говорят так называемых «песках фермера», залегающих ниже забоя. Они получили такое название

¹Такие структуры и связанные с ними кольцевые залежи встречаются на северо-западе Западно-Сибирской низменности. - Прим. ред.

потому, что владелец земельного участка бывает уверен, что продуктивные пески имеются в разрезе. И иногда он бывает прав. Но бурение велось до слишком малой глубины, часто из-за нехватки финансовых средств, недостаточной мощности оборудования или ошибок в стратиграфическом расчленении вскрытого разреза, в связи с чем скважина может быть остановлена в отложениях, залегающих выше коллектора.

д) Если разведка ведется на ловушку, связанную с выклинивающимися или замещающимися вверх по восстанию слоев породами-коллекторами, разведочная скважина может вскрыть проектный горизонт за зоной выклинивания и, таким образом, не обнаружит резервуара.

3. Смещение ловушки с глубиной. Выше уже рассматривался ряд причин, вызывающих латеральное смещение или изменение характера структурной ловушки с глубиной (см. стр. 231-235). Это может быть вызвано региональным уменьшением мощности стратиграфического разреза и сближением отдельных его слоев; увеличением амплитуды структур с глубиной, обусловленным периодически возобновлявшимся ростом складки или разрыва; выжиманием эвапоритовых или других некомпетентных пород; образованием параллельных складок; погребенными эрозионными выступами, не отражающимися в вышележащих отложениях; деформацией слоев; выветриванием поверхностных слоев, сопровождающимся обрушением и оседанием пород; складко- и сбросообразованием в слоях, залегающих под поверхностью углового несогласия, и, наконец, перемещением нефти в направлении движения пластовых вод в коллекторе.

4. Отклонение ствола разведочной скважины от вертикали. Хотя в настоящее время может осуществляться бурение точно направленных скважин, которые вскрывают коллекторский пласт в любой заранее определенной точке, стволы множества ранее пробуренных скважин имеют отклонение от вертикали, причем азимут и величина этого отклонения неизвестны (см. стр. 542: фиг. 13.2). Точка, в которой такая скважина вскрывает коллектор, может так далеко по горизонтали отстоять от устья скважины, что она окажется за пределами предполагаемого положения ловушки и минует залежь. Поиски ловушек, связанных с разрывными нарушениями, а также ловушек, расположенных на крыле соляных куполов, требуют особенно точно направленного бурения; залежи здесь могут быть легко пропущены даже при небольшом отклонении ствола, причем причина этого может остаться невыясненной без проверки азимута искривления ствола скважины.

5. Отсутствие в ловушке нефти или газа. Может случиться, что во вскрытой скважиной ловушке не будет обнаружено ни нефти, ни газа или удастся получить только непромышленные их притоки. Действительно, большая часть перспективных коллекторов в пределах структурного поднятия обычно не содержит промышленных залежей, а залегающие между поверхностью и продуктивным горизонтом проницаемые песчаные пласты оказываются водоносными. Почему же не все проницаемые толщи, залегающие в разрезе складок вплоть до наиболее глубокого продуктивного пласта, промышленно нефтегазоносны, особенно те толщи, которые продуктивны на других участках? Существование проницаемых, но непродуктивных слоев может объясняться несколькими причинами:

а) Нефть и газ в пласт не поступали. Хотя обычно полагают, что почти все неколлекторы содержат нефтяные углеводороды и должны рассматриваться как нефтегазопроизводящие, поступление нефти и газа в отдельные ловушки крайне различно (см. стр. 497-500: глава 12, дальность миграции). Большое значение, вероятно, следует придавать тому факту, что ловушка может быть приурочена не к гипсометрически наиболее высокой части структуры. Поэтому, если даже скважина, пробуренная в своде антиклинальной складки, оказалась сухой, поиски залежей должны продолжаться на ее крыльях. В особенности это относится к «лысым» структурам, которые ни в коем случае нельзя относить к непродуктивным до полного завершения разведочных работ.

б) Локальная ловушка сформировалась слишком поздно. Там, где условия, благоприятствовавшие миграции углеводородов по коллекторам, существовали до того, как сформировалась локальная ловушка, нефть или газ могли пройти мимо участка, на котором впоследствии эта ловушка образовалась (см. стр. 525-530: глава 12, время образования ловушек). Кроме того, ловушка могла быть размыта, а содержащаяся в ней залежь уничтожена (фиг. 13-22). Таким образом, при поисках весьма важны данные о соотношении времени формирования ловушки и времени региональной миграции углеводородов.

в) Нефть могла быть вымыта из ловушки. При определенных гидродинамических условиях, существующих в настоящее время или существовавших в геологическом прошлом, газ и нефть могли быть частично смещены

Фиг. 13-22. Схематический разрез, показывающий поверхность несогласия, маскирующую ловушку, содержащую нефтяную залежь (А), или обусловливающую отсутствие залежи в ловушке (Б).

Первоначально обе ловушки, по-видимому, содержали залежи нефти, но залежь в случае Б была разрушена в результате обнажения ее на поверхности и эрозии, в то время как залежь А сохранилась. На основании этих данных можно предполагать, что аккумуляция нефти происходила до формирования эрозионной поверхности и что после отложения глинистых пород выше поверхности несогласия миграции нефти не было. Противоположная картина отмечается на месторождении Оклахома-Сити (фиг. 14-6), где крупное скопление нефти приурочено к разрушенной в предпенсильванское время ловушке, что позволяет предполагать более молодой возраст залежи.

в них на крыло ловушки или даже полностью вымыты. Короче говоря, такая ловушка при данных гидродинамических условиях является неэффективной (см. стр. 514-515: глава 12, наклонные водо-нефтяные контакты). Коллекторы, пропитанные нефтью в пределах ловушки, указывают на то, что в этой ловушке некогда была залежь, которая позже оказалась расформированной.

6. Залежь не была выявлена во время бурения. Многие залежи, способные дать промышленные притоки нефти и газа, не удалось выявить при бурении. Некоторые из них были открыты при последующих работах, но, без сомнения, имеется много других залежей, еше не установленных. Причины этих неудач могут быть следующие: глубины бурения постоянно увеличиваются, соответственно увеличивается и давление бурового раствора. Высококачественный буровой раствор представляет собой сложную смесь химических веществ. Растут скорости бурения, применяется все более тяжелое оборудование и более мощные силовые установки. В результате этого некоторые нефтеносные пласты запечатываются вследствие высокого давления бурового раствора, образующего непроницаемые глинистые корки на стенках скважины или из-за разбухания глинистых минералов, содержащихся в нефтегазоносном пласте, что обусловлено проникновением в поры пласта пресной воды из бурового раствора. Небольшое количество нефти и газа, содержащееся в поровом пространстве пород, вскрытых скважиной с диаметром ствола всего 5 дюймов на глубине 2 мили и более, бывает очень трудно установить, после того как эти нефть и газ, смешавшись с буровым раствором, достигают поверхности земли. Современные методы исследова­ния бурового раствора с применением электронной и аналитической аппаратуры позволяют в значительной мере устранить неопределенности в оценке небольших нефте- и газопроявлений, но полностью исключить фактор субъективного подхода, особенно в случаях промежуточных значений, все же еще не удается.

Продуктивный пласт может быть пропущен на электрокаротажных диаграммах, если он характеризуется низкими сопротивлениями. Последние обычно вызваны обилием пластовых вод, обладающих высокой соленостью и поэтому скрывающих высокие сопротивления, свойственные нефтегазонасыщенным породам. Многие залежи были открыты в результате исследований, проведенных в старых скважинах, или при бурении вблизи заброшенных разведочных скважин. Эти работы проводились в том случае, если исполнитель, давший первоначальное заключение, не изучил электрокаротаж достаточно тщательно, чтобы можно было выявить продуктивный пласт. Стенки ствола скважины могут обваливаться, и тогда на основании отобранных образцов уже невозможно установить наличие нефти или газа. Кроме того, нефть может быть такой светлой и иметь настолько низкую плотность, что она быстро испаряется. Следы ее почти незаметны, если образцы исследуются через некоторое время после того, как они были извлечены из скважины. Нельзя не отметить, что одной из причин пропуска продуктивного пласта при бурении может быть неопытность или небрежность работника, которому поручено наблюдение за буровым шламом и керном, или отсутствие этого работника на месте в нужное время.

Каждая поисковая скважина, в которой отмечены хотя бы слабые признаки газа или нефти, установленные любым из возможных методов, используемых для определения присутствия нафтидов, является объектом для изучения. Необходимо решить, стоит ли тратить деньги - возможно, много денег - на дальнейшую разведку предполагаемого продуктивного пласта, если в нем отмечены слабые нефтегазопроявления? Неправильный ответ может явиться одной из причин неудачи в открытии залежи. На практике проявляются различные крайности. Одни геологи проводят опробование испытателем пласта или даже спускают эксплуатационную обсадную колонну при любых нефте- или газопроявлениях, другие идут на дополнительные расходы, только когда они считают, что нефтегазопроявления достаточно интенсивны, чтобы быть уверенным в получении промышленных притоков. Многие залежи, открытые в результате исследований, проведенных в скважинах, где отмечались только незначительные нефтегазопроявления, позволяют заключить, что в большинстве случаев эти исследования оправдывают затраченные на них средства.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 2

Цитированная литература

Заключение

Глубинная геология представляет собой синтез всех самых разнообразных геологических и технических данных, получаемых при бурении как эксплуатационных, так и сухих скважин, а также результатов геофизических и геохимических исследований. Эти данные наносятся на карту и разрезы многих типов, единственная цель которых состоит в том, чтобы помочь отчетливо представить и понять глубинные геологические условия. От правильного их понимания зависит выбор точек для заложения поисковых, эксплуатационных и оконтуривающих скважин.

Вероятно, наиболее ценную информацию дает каротаж. Детальность и точность данных, полученных из скважин, возрастает с каждым годом по мере развития новой техники и методов исследования, несмотря на то, что глубины бурения постоянно увеличиваются. Новые и более точные данные заставляют постоянно пересматривать и исправлять построенные карты и разрезы и заменять устаревшие представления. И хотя глубины бурения все более увеличиваются и все более усложняется изучаемое геологическое строение древних формаций, процент правильно сделанных прогнозов не уменьшается.

Излишне еще раз подчеркивать, что различия составляемых карт и проводимых исследований не являются конкурирующими или взаимоисключающими ‑ они должны использоваться совместно. Любое исследование вносит свой вклад и способствует пониманию общей геологической картины, что приводит в итоге к обнаружению новых неразведанных ловушек, безошибочному выбору точек для бурения поисковых и оконтуривающих скважин и, в конце концов, к открытию новых залежей нефти и газа.

1. Cram I.H., Definitions of Geology - Subsurface Geology, Bull. Am. Assoc. Petrol. Geol., 29, p. 470, 1945. Вusсh D.A., Subsurface Techniques, in Parker D. Trask (ed.), Applied Sedimentation, John and Sons, New York, and Chapman and Hall, London, pp. 559-578, 1950. LeRоу L.W. (ed.), Subsurface Geologic Methods - A Symposium, Quart. Colo. Sch. Mines, 44, 826 p., 1949; 2nd ed., 1156 p., 1951. (Всестороннее обсуждение методов глубинной геологии.)

2. Кау М., Paleogeographic and Palinspastic Maps, Bull. Am. Assoc. Petrol. Geol., 29, pp. 426-450, 1945. (Описаны многие типы карт, используемых для выявления геологической истории региона.). Coffin R.С, Recent Trends in Geological-Geophysical Exploration and Methods of Improving Use of Geophysical Data, Bull. Am. Assoc. Petrol. Geol., 30, pp. 2013- 2033, 1946. Geophysical Case Histories, I, 1948, L.L. Nettleton (ed.), and 11, 1956, Paul L. Lyons (ed.), Soc. Explor. Geophys., Shell Bldg., Tulsa, Okla. (Включает многочисленные карты, построенные на основании исследований, приведших к открытиям месторождений нефти и газа.). Krumbein W.С, Sloss L.L., Stratigraphy and Sedimentation, 2-nd ed., W.H. Freeman and Co., San Francisco, 660 p., 1963. (Обширная библиография. В работе всесторонне рассматривается глубинное картирование, особенно в главах 10 - Принципы корреляции, - 13 - Стратиграфические карты - и 14 - Палеогеография.

3. Krumbein W. С, Criteria for Subsurface Recognition of Unconformities, Bull. Am. Assoc. Petrol. Geol., 26, pp. 36-62, 1942.

4. Jackson G., Directional Drilling Today, Journ. Petrol. Technol., sec. 1, pp. 27-31, 1953.

5. Lee W., The Stratigraphy and Structural Development of the Forest City Basin in Kansas, Bull. 51, State Geol. Surv., Univ. of Kansas, 142 p., 1943. (Содержит много региональных карт изопахит.)

6. Lee W., Relation of Thickness of Mississippian Limestones in Central and Eastern Kansas to Oil Deposits, Bull. 26, State Geol., Surv., Lawrence, Kansas, 42, p., 1939. (Рассматриваются карты изопахит.)

7. Weiriсh Т.Е., Shelf Principle of Oil Origin, Migration, and Accumulation, Bull. Am. Assoc. Petrol. Geol., 37, pp. 2027-2045, 1953.

8. Levorsen A.I., Convergence Studies in the Mid-Continent Region, Bull. Am. Assoc. Petrol. Geol., 11, pp. 657-682, 1927. Wheeler R.R., Swesnik R. M., Stratigraphic Convergence Problems, World Oil, pp. 57-62, 1950.

9. Swain F.M., Onlay, Offlap, Overstep, and Overlap, Bull. Am. Assoc. Petrol. Geol., 33, pp. 634-636, 1949. (Содержатся ссылки на 15 более ранних статей по этой проблеме.)

10. Еatоn J.Е., The By-Passing and Discontinuous Deposition of Sedimentary Materials, Bull. Am. Assoc. Petrol. Geol., 13, pp. 713-762, 1929.

11. Moore R.C., Meaning of Facies, Memoir 39, Geol. Soc. Am., pp. 1-34, 1949. (Почти весь выпуск ‑ 171 страница - состоит из статей, рассматривающих проблемы фаций. Содержит много иллюстраций.)

12. Krumbein W.С. Recent Sedimentation and the Search for Petroleum, Bull. Am. Assoc. Petrol. Geol., 29, pp. 1233-1261, 1945.

13. Krumbein W.C, Principles of Facies Map Interpretation, Journ. Sed. Petrol., pp. 200-211, 1952.

14. Krumbein W.C, Lithofacies Maps and Regional Sedimentary-Stratigraphic Analysis, Bull. Am. Assoc. Petrol. Geol., 32, pp. 1909-1923, 1948. Sloss L.L., Dapples E.C, Krumbein W. C, Lithofacies Maps, An Atlas of the United States and Southern Canada, John Wiley and Sons., 108 p.,

Не нашли то, что искали? Воспользуйтесь поиском:

Page 3

Осадочные отложения: теория углеродного коэффициента, седиментационные бассейны. Нефте- и газопроявления. Несогласия. Зоны выклинивания проницаемых пород. Региональные сводовые поднятия. Локальные ловушки.

Глава 14 Нефтегазоносные провинции

При любых разведочных работах на нефть и газ, вне зависимости от того, проводят ли их крупные частные нефтяные компании или государственные, возникает острая необходимость решить, какие из еще не разведанных или слаборазведанных провинций или регионов наиболее перспективны и окупятся ли затраченные на разведку месторождений средства. Лишь очень немногие организации, если вообще такие имеются, могут вести разведочные работы широкого масштаба на всех возможных территориях. Каждая организация из большого числа районов выбирает такие, которые она считает наиболее благоприятными в данной конкретной ситуации. Крупная компания должна распределять разведочные работы соответственно своей оценке существующих условий. Кроме геологических условий, при выборе регионов следует учитывать существующую политическую обстановку, условия аренды площадей, расстояние от рынков сбыта и трубопроводов и стоимость работ (см. также гл. 15). Но в первую очередь выбор региона должен все же основываться на геологических данных, являющихся главными в комплексной оценке.

Наиболее важное достижение геолога-нефтяника - открытие залежи нефти или газа, которая свидетельствует о новой нефтегазоносной провинции. Какие же критерии должен применять геолог, чтобы выбрать для разведочных работ наиболее перспективную территорию? Какие признаки следует принимать в расчет? Каким образом можно сравнить перспективность таких, скажем, отдаленных территорий, как Флорида и Юта, Австралия и Северная Африка или как Франция и Англия? Для сохранения и увеличения мировых промышленных запасов нефти и газа ни нефтяной промышленности отдельных стран, ни частным компаниям нельзя рассчитывать на случайное открытие новой нефтегазоносной провинции. Для открытия нефтегазоносных провинций следует опираться на научный прогноз. Какие же геологические данные могут быть использованы для такого прогноза? Каким из этих данных следует отдать предпочтение перед другими, чтобы избежать ошибки? Некоторые из этих вопросов будут рассмотрены в настоящей главе. [В редакторском примечании ко 2-й главе (стр. 42) уже отмечалась неопределенность понятий о нефтегазоносных провинциях, а также субпровинциях.

Основным крупным элементом нефтегазогеологического районирования надо считать нефтегазоносный бассейн (НГБ). Это более или менее крупная (обычно значительно больше 103 км²) автономная впадина, выполненная субаквальными отложениями значительной мощности, в которой осадочные породы с рассеянным в них органическим веществом в течение длительного геологического времени (n×106 - n×107 лет) могут находиться в зоне катагенеза с температурой 90±25°С, т.е. в зоне, где осуществляется главная фаза нефтеобразования.

В пределах сложных в геологическом отношении НГБ выделяются нефтегазоносные области, которые в свою очередь подразделяются на районы. Менее сложные НГБ непосредственно делятся на районы. Очень крупные НГБ, площадью более 106 км², можно называть мегабассейнами.]

При сравнении геологических условий известных нефтегазоносных провинций оказывается, что они чрезвычайно разнообразны. Каждая провинция имеет собственную, отличную от других геологическую историю, свои особенности тектонического строения, характерный стратиграфический разрез и специфические типы скоплений нефти и газа. Представляется крайне сомнительным, чтобы многие из этих характерных черт геологического строения могли быть точно предсказаны в новых неизученных провинциях, на территории которых запроектировано проведение буровых работ. Однако все же существуют некоторые эмпирически установленные особенности, которые, по-видимому, характерны для большинства продуктивных площадей и играют ведущую роль в предварительной оценке перспектив нефтегазоносности региона до открытия там промышленных месторождений. Среди этих особенностей геологического строения можно выделить следующие: 1) характер отложений, 2) нефте- и газопроявления, 3) поверхности несогласия, 4) зоны выклинивания проницаемых пород, 5) региональные сводовые поднятия, 6) характер локальных ловушек.

Эти черты могут быть выявлены частично по данным геологических исследований на поверхности, особенно в краевых частях региона, где обнажаются толщи, погружающиеся к центру бассейна. Следует учесть, что почти во всех перспективных регионах в больших или меньших объемах уже проводилось разведочное бурение. Особенно тщательному изучению следует подвергнуть стратиграфическую приуроченность и характер различных пластовых флюидов, встреченных в скважинах. Рассмотренные совместно с материалами геологических работ на поверхности эти данные могут оказать большую помощь в прогнозе геологических условий, существующих на глубине. Даже одна единственная разведочная скважина, пробуренная во внутренней части бассейна, на достаточном удалении от района выходов на поверхность горизонтов, погружающихся в бассейн, может иметь огромную ценность для составления многих типов карт, являющихся основой для понимания геологической истории региона. Но для того, чтобы разведочная скважина могла дать максимально возможное количество полезных сведений, она должна быть тщательно задокументирована, должно быть поднято достаточное количество керна, а образцы его подвергнуты детальному изучению.

Необходимым условием перспективно нефтегазоносной провинции является присутствие чехла осадочных пород. Осадочные отложения обеспечивают источники углеводородов, они могут быть коллекторами или покрышкой для залежей в ловушках. Практически все нефтяные и газовые залежи связаны именно с осадочными отложениями, которые по этой причине должны рассматриваться в первую очередь при любой оценке перспективности на нефть и газ того или иного не изученного и не продуктивного до настоящего времени региона. В целом можно считать, что вероятность открытия промышленных залежей нефти приблизительно пропорциональна объему осадочного чехла ‑ чем больше его мощность, тем больше шансов обнаружить здесь залежи. Объем осадочного чехла, измеренный в кубических милях, может поэтому служить мерой для оценки и сравнения потенциальных возможностей разных регионов. Общее количество нефти, уже добытой к настоящему времени, и той, которую можно будет извлечь в будущем, составляет в США по различным оценкам от 6000 до 200 000 баррелей на 1 куб. милю осадочных пород для различных нефтегазоносных провинций, а в среднем около 50 000 баррелей на 1 куб. милю для 2 млн. куб. миль осадочных пород, считающихся нефтегазоносными [1]. Поскольку в Соединенных Штатах Америки изучены значительные площади, то установленную для США цифру 50 000 баррелей нефти на 1 куб. милю осадочных пород можно принять и для других регионов земного шара, еще не изученных и не разбуренных¹.

По-видимому, осадочные отложения США не должны содержать большее количество нефти и газа, чем подобные же отложения в других менее исследованных частях земного шара. Однако цифру 50 000 баррелей на 1 куб. милю следует рассматривать как усредненную величину только для крупного региона, а не для отдельных локальных районов. Это становится совершенно очевидным, если вспомнить богатые углеводородами отложения таких небольших по площади субпровинций, как бассейн Лос-Анджелес в Калифорнии и район Баку в СССР. Даже при максимально высоких возможных оценках объема потенциально нефтегазоносных пород из числа таковых исключаются в настоящее время отложения всех территорий, где мощность осадочного чехла не превышает 1000 футов, все отложения плейстоценового, кембрийского и докембрийского возраста, а также отложения, даже в небольшой степени подвергшиеся метаморфизму.

[С нефтегенетической точки зрения к отложениям, генерировавшим в той или иной степени нефть, следует относить лишь те субаквальные осадочные породы, которые залегают (или залегали) на глубинах не менее 2000± 500 м (в зависимости от типа осадков и их возраста). При этом нельзя исключать ни плейстоценовые, ни кембрийские и рифейские (синийские) отложения. Последнее замечание касается и промышленной нефтегазоносности. Ее нижний предел определяется не возрастом пород, а степенью их катагенеза, о которой речь идет ниже.]

Следует также учитывать характер осадочных пород. Поскольку большинство обнаруженных до настоящего времени залежей нефти и газа приурочено к морским отложениям, можно считать, что территории, где подобные отложения слагают основную часть разреза осадочного чехла, должны быть более перспективными на нефть и газ, чем территории, где развиты породы преимущественно континентального генезиса. Благоприятной предпосылкой для высокой оценки перспектив нефтегазоносности является также изменчивость литологического состава отложений. Если отложения того или иного района представлены только глинистыми либо только песчаными породами, вероятность обнаружить здесь промышленные скопления нефти и газа значительно меньше, чем если осадочные толщи образованы переслаивающимися пластами глинистых сланцев, песчаников и известняков. Если же в пределах обширной площади развиты выдержанные по площади песчаные пласты, то степень их перспективности в большей мере зависит от количества локальных тектонических структур, чем пластов, выклинивающихся или замещающихся по простиранию слабопроницаемыми породами.

Осадочные толщи, полностью сложенные известняками и доломитами, более благоприятны для поисков залежей нефти и газа, чем отложения, образованные только песчаниками или глинистыми сланцами, поскольку в карбонатных толщах могут содержаться как коллекторские, так и слабопроницаемые пласты, обеспечивающие надежность ловушек. Во многих районах, таких, как, например, западный Техас, нефть и газ получают из известняковых и доломитовых коллекторов в карбонатной толще мощностью в тысячи футов. Вообще же для большинства отложений характерны

¹В первом американском издании книги (1956, стр. 607-608) средняя величина начальных запасов нефти также оценивалась в 50 000 баррелей на 1 куб. милю. К сожалению, в русском переводе (Гостоптехиздат, 1958) при пересчете на метрические меры были допущены многочисленные ошибки. - Прим. ред.

латеральные фациальные изменения, и поэтому без достаточных оснований никогда не следует предполагать, что разрез осадочного чехла региона полностью представлен только известняками, только песчаниками или только глинистыми породами. Во всяком случае, такое заключение не может быть сделано с уверенностью до тех пор, пока в различных частях седиментационного бассейна не будет пробурено хотя бы несколько скважин.

Метаморфизм осадочных отложений представляет собой еще один фактор, который, как считают многие геологи, определяет возможность обнаружить промышленные скопления углеводородов. Метаморфизмом (этот термин часто употребляется неправильно) следует называть только такие изменения горных пород, которые связаны с воздействием на них высоких температур и давлений. Слабая степень метаморфизма пород устанавливается по присутствию в них вторичных минералов - хлорита, серицита, ориентированных чешуек слюды, а также по наличию вытянутых и деформированных частиц, образующихся под влиянием повышенных температур и давлений. Ортокварциты формируются при цементации частиц отложений кремнием, источники которого могут быть как первичными, так и вторичными. Эти породы не должны рассматриваться в качестве метаморфических. Одно из последствий метаморфизации отложений - снижение их проницаемости и, следовательно, уменьшение вероятности аккумуляции нефти и газа в залежи. Другое возможное значение слабой метаморфизации заключается в том, что нафтиды под ее влиянием могут переходить в более летучие формы. Именно это обстоятельство привело к развитию теории углеродного коэффициента, которая будет рассмотрена подробнее, поскольку она имела большое значение в истории развития разведочных работ на нефть и газ.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 4

Степень слабого метаморфизма¹ определенных осадочных пород, мерилом которой является карбонизация включенных в них углей, была использована как показатель характера нефтей и газов, содержащихся в этих породах. Такой метод, который, как полагали, дает правильные результаты, получил название теории углеродного коэффициента. Наибольшее развитие эта теория получила в работе Уайта [2], вышедшей в свет в 1915 г., хотя основные ее идеи обсуждались еще со времени, когда была пробурена скважина Дрейка [3].

Теория углеродного коэффициента, в том ее аспекте, который применяется для региональных поисков нефти и газа, утверждает, что для территорий, характеризующихся слабым метаморфизмом [катагенезом] осадочных пород и развитием бурых лигнитовых углей, свойственны нефти высокого удельного веса. По мере повышения давлений и температур процентное содержание связанного углерода увеличивается, сорт углей улучшается, а нефть становится более легкой. На территориях, где распространены битуминозные угли [по американской терминологии, весьма неудачной, они отвечают углям «Д», «Г» и «Ж» по обозначениям, принятым в советской литературе], можно ожидать встретить только

¹Дав относительно правильное определение термина «метаморфизм», автор стал применять его неправильно к признакам, предшествующим собственно метаморфизму. Правда, он говорит о малом, низком или слабом (low-grade, little) метаморфизме, но только вначале, а затем оговорок не делает. Другие американские авторы предпочитают говорить о диагенезе, понимая его неоправданно широко (так употребляет этот термин применительно к другим породам и А. Леворсен), или об эометаморфизме (новый термин К. Ландеса) и т. д. Правильнее говорить о катагенезе. Эта стадия литогенеза сменяет диагенез примерно тогда, когда торф превращается в бурый уголь; она завершается этапом, в котором ооганическое вещество утратило почти все летучие компоненты и превратилось в антрацит. Усиленная графитизация его - признак начала собственно метаморфизма (метагенеза). - Прим. ред.

газ и легкие нефти, а по мере увеличения степени метаморфизма [катагенеза] достигается граница, ниже которой встречаются лишь углеводородные газы. И, наконец, там, где каменный уголь представлен антрацитом, нельзя ожидать открытия промышленных скоплений ни газа, ни нефти. В целом проведенные исследования подтверждают представления об отсутствии промышленных залежей углеводородов на территориях, где каменные угли характеризуются высокой степенью метаморфизма [катагенеза]. Однако это общее правило имеет исключения; кроме того, необходимо отметить, что в районах, которые считаются неблагоприятными для поисков нефти и газа из-за высокой степени метаморфизма [катагенеза] имеющихся там углей, пробурено недостаточное количество глубоких поисковых скважин.

Углеродный коэффициент, характеризующий степень метаморфизма отложений, измеряется процентным содержанием связанного углерода в обезвоженной и беззольной части высушенного угля. Углеродный коэффициент вычисляется путем деления весового процентного содержания связанного углерода в общем анализируемом количестве каменного угля на сумму процентного содержания в нем связанного углерода и летучих веществ. Равные значения углеродного коэффициента, нанесенные на карту, соединяются линиями, называемыми изокарбами. Такие карты построены и опубликованы для многих регионов [4]. Они основаны на анализах беззольной части каменного угля, но влага наряду с летучими веществами входила в эти анализы как составная часть угля [5].

Соотношение между содержанием связанного углерода в обезвоженных каменных углях, с одной стороны, и наличием нефти и газа, с другой, было показано Фуллером [6] в виде следующей таблицы.

Углеродный коэффициент (по поверхностным данным), %: Содержание нефти и газа
больше 70 За редкими исключениями нефть и газ отсутствуют
65-70 Обычно наблюдаются слабые проявления и мелкие скопления. Промышленные залежи отсутствуют
60-65 Промышленные залежи редки, но нефть в них исключительно высокого качества. Довольно часто скважины дают газ, но обычно из небольших непромышленных залежей
55-60 Преимущественно легкие нефти и газ месторождений в Аппалачах
50-55 Преимущественно нефти средней плотности из месторождений Огайо и Индианы, а также региона Мид-Континент
Меньше 50 Тяжелые нефти побережья Мексиканского залива, а также нефти в неконсолидированных отложениях третичного и другого возраста

Поскольку теория углеродного коэффициента имеет самое близкое отношение к проблеме поисков промышленных скоплений углеводородов, ей было посвящено большое количество исследований. В результате первоначальные представления были значительно модифицированы. Против теории было выдвинуто много возражений, касающихся главным образом точности измерения углеродного коэффициента, но отчасти также и интерпретации этих измерений, причем сомнению подвергалось и значение углеродного коэффициента как показателя степени метаморфизма пород, и его роль в выборе направлений поисково-разведочных работ на нефть и газ.

В основе некоторых возражений против теории углеродного коэффициента лежит несогласие с методами отбора образцов угля и их анализа. Вкратце они сводятся к следующему:

¹Обычно анализируемые образцы не отражают действительные свойства угля. Эти образцы отбираются либо из угольных пластов, характеризующихся различными стадиями выветривания, либо из отдельных прослоев внутри угольного пласта. Кроме того, если образец немедленно после отбора не помещается в герметически закупоренный контейнер, начинается его выветривание. В итоге анализируемый образец может существенно отличаться от коренной породы в недрах, причем результаты полученных анализов в разных лабораториях также различны. Правильную интерпретацию результатов исследований можно ожидать только в том случае, если сами эти анализы выполняются по одинаковой или сходной методике.

При строгом подходе теория углеродного коэффициента требует сравнения безводных и беззольных компонентов каменных углей. Первоначально полагали, что всякое присутствие влаги в образце случайно и она не является составной частью угля. Однако в настоящее время считают, что некоторая часть влаги все же представляет собой действительный компонент угля [7] и что для измерения процентного содержания связанного углерода влага столь же важна, как и имеющиеся в угле летучие вещества. Особенно большое различие в результатах анализов, произведенных по этим двум методикам, отмечается для углей из третичных отложений. Процентное содержание связанного углерода заметно выше при его определении на безводную и беззольную часть угля; для некоторых слабометаморфизованных углей, например, оно выше в два раза.

Многие из составленных ранее карт изокарб (линии равных углеродных коэффициентов) строились по данным о величине углеродного коэффициента не для одного и того же угольного пласта на различных участках его развития, а для любых углей, обнару­женных в регионе. В результате на таких картах сопоставлялись данные о более древних и более глубокозалегающих углях с данными о более молодых углях. То обстоятельство, что по краям бассейна обнажаются более древние угольные пласты, которые, как можно ожидать, должны характеризоваться большими значениями углеродного коэффициента, во внимание не принималось. В Аппалачском регионе, например, содержание связанного углерода увеличивается на 0,69 на каждые 100 футов при движении вниз по стратиграфическому разрезу [8]. Это означает, что углеродный коэффициент более древних угольных пластов, глубоко погружавшихся на протяжении своей геологической истории, а ныне выведенных на поверхность вдоль восточной границы региона, значительно выше, чем, более молодых углей, распространенных западнее. Как более древние, так и молодые угольные пласты, по-видимому, испытали здесь приблизительно одинаковые тектонические деформации. Поэтому при сравнении этих углей скорее выявляются первичные различия в их составе и различия в условиях и глубине их захоронения.

Таким образом, различия в методах определения углеродного коэффициента могут оказаться весьма значительными и привести к ошибочным выводам. Это можно установить по максимально возможным отклонениям углеродного коэффициента от нормы, достигающим следующих величин: из-за ошибок при отборе образцов угля, при взятии образцов из пластов, подвергшихся выветриванию и т.д. ‑ 15%; из-за ошибок при нестандартных методах анализов углей ‑ 20%; из-за различия результатов при анализе безводных углей и углей, содержащих влагу, ‑ 50% [9].

Основная слабость теории углеродного коэффициента заключается в предположении, что изменения в процентном содержании связанного углерода отражают различия в степени метаморфизма [катагенеза] пород рассматриваемой территории. Если это главное в теории предположение ошибочно, тогда совершенно неправильным оказывается и заключение, что почти полное отсутствие нефти и газа в регионе находится в прямой связи с высокими значениями углеродного коэффициента. Вот некоторые из возражений, выдвигаемых против этого основополагающего предположения.

Если причину более высоких значений углеродного коэффициента не связывать с метаморфизмом осадочных образований, то колебания этих значений, как можно полагать, должны обусловливаться первичными факторами - различиями в составе органического вещества, отлагавшегося на отдельных участках, или различиями в обстановке осадконакопления. Некоторые угли первоначально отличались большим процентным содержанием водорослевого материала, пыльны и спор или древесного материала по сравнению с другими. Характер первоначально содержавшегося в угле органического вещества мог изменяться от района к району в пределах одной и той же угленосной формации, что определялось особенностями седиментационной обстановки. Эти различия в первичном органическом веществе, вероятно, могли обусловить разную степень его карбонизации при одинаковых температурах и давлениях. Подобная же аргументация применяется и в отношении потенциально нефтегазоносных отложений: утверждение, что с увеличением углеродного коэффициента пористость и проницаемость пород снижаются, в общем совершенно справедливо, однако причину этого часто следует искать также в первичных факторах, а не во вторичных.

Степень метаморфизма [катагенеза] пород при одинаковых температурах и давлениях будет различна в разных отложениях. Отложения, содержащие даже небольшие количества сравнительно неустойчивых минералов, таких, как некоторые глинистые минералы и карбонаты, обладают при деформациях большей пластичностью и, следовательно, в большей степени теряют свою пористость и проницаемость, чем отложения, целиком образованные устойчивыми минералами, например кварцем. Компетентность угленосных и связанных с ними нефтегазоносных формаций может быть, таким образом, совершенно различной. Поэтому степень метаморфизма [катагенеза] углей не может служить достаточно надежным показателем метаморфизма залегающих по соседству с ними пород-коллекторов.

3. Если при метаморфизме [катагенезе] под влиянием высоких температур и давлений низкокачественные нефти или первичный органический материал превращаются в высококачественную нефть, то в породах должны оставаться следы этого процесса, в виде асфальта и кокса [10]. [Это устаревшее представление не может серьезно приниматься во внимание]. Такое заключение, по-видимому, может быть принято без каких-либо особых доказательств, поскольку в процессе перегонки нефти на всех стадиях остаются более тяжелые ее компоненты. Поскольку такие остаточные продукты нефти в породах не устанавливаются, можно полагать, что процесс медленной перегонки не играл существенной роли. [Всегда остается кероген]. Нельзя, однако, исключать возможность того, что в породах присутствуют только микроскопические количества остаточного «углеводородного вещества», трудно поддающегося определению. Было бы естественным ожидать, что если коллекторы располагались в зоне, характеризовавшейся высокими температурой и давлением, то легкие нефти и особенно газ должны были мигрировать из этой зоны в на­правлении движения пластовых вод на территорию с более низким уровнем потенциальной энергии, оставляя в породах свои тяжелые компоненты. Однако, согласно теории углеродного коэффициента, газ приурочен именно к районам, для которых свойственны наиболее высокая степень метаморфизма пород и, вероятно, наиболее высокие температуры и давления.

4. Хилт [11] в 1873 г. впервые пришел к заключению, что в серии угольных пластов степень карбонизации [углефикации], как правило, увеличивается по мере перехода к стратиграфически более древним горизонтам разреза. Правильность этого вывода была подтверждена при изучении угольных месторождений всего земного шара, благодаря чему он получил название закона Хилта. Степень углефикации увеличивается в среднем на 0,7 на каждые 100 футов разреза. Таким образом, во многих случаях значение углеродного коэффициента, полученное при изучении углей, залегающих на поверхности, не будет соответствовать величине этого коэффициента на глубинах в тысячи футов, т. е. там, где коллекторы могут быть промышленно нефтегазоносными. Как отметил Расселл [12], нефти, связанные с известняками в Кентукки, а также, вероятно, и многие другие нефтяные залежи приурочены к коллекторам, для которых характерна столь же высокая степень метаморфизма [катагенеза], как и для пород, включающих угли с чрезвычайно большим углеродным коэффициентом. Такие породы, согласно теории углеродного коэффициента, не должны были бы содержать никаких углеводородов, кроме газа. Поэтому для определения степени метаморфизма [катагенеза] коллекторов следует изучать угли, приуроченные к слоям, стратиграфически примерно одновозрастным перспективно нефтегазоносным горизонтам [8]¹.

5. Другая возможная причина некоторых кажущихся необъяснимыми колебаний величины углеродного коэффициента связана с изменениями проницаемости пород, включающих угольные пласты. Чем выше проницаемость таких пород, тем более благоприятны условия для миграции из углей их летучих компонентов. Различия в величине углеродного коэффициента, таким образом, могут отражать не столько степень метаморфизма, сколько разную проницаемость вмещающих пород.

6. Уайт полагал, что давления, обусловливающие метаморфизацию пород, вызываются тангенциальными силами, проявляющимися в результате складкообразования и диастрофизма. Большинство же более поздних исследователей пришли к выводу, что величина углеродного коэффициента зависит от глубины захоронения рассматриваемых пород [13]. Этот последний вывод находится в полном согласии с законом Хилта. Однако Хендрикс, тщательно изучив распределение углеродных коэффициентов в углях Арканзаса и Оклахомы [14], заключил, что содержание связанного углерода непосредственно определяется структурными деформациями региона под влиянием давления, направленного с юга. Он установил, что степень углефикации, а следовательно, и величина углеродного коэффициента не связаны ни со стратиграфическим положением угольных пластов, ни с первоначальным составом углей. Такая интерпретация углеродных коэффициентов на этой территории все же недостаточно убедительна, так как изокарбы (линии равных углеродных коэффициентов) в гораздо большей степени параллельны изопахитам угленосной формации, чем простираниям надвигов.

Изложенный материал приводит нас к выводу, что на современном уровне знаний доказательства совместной метаморфизации нефти и углей не убедительны. Вероятно, существует какая-то региональная взаимосвязь между углеродными коэффициентами (особенно измеренными на основании анализов беззольных, но включающих влагу компонентов угля) и степенью метаморфизма [катагенеза] пород, вызванного нагрузкой вышележащих отложений, диастрофизмом или обоими этими факторами. На многих картах углеродного коэффициента его низкие значения строго приурочены к регионам, характеризующимся слабой деформированностью и незначительной мощностью отложений, перекрывающих изученный угольный пласт. Но, несмотря на это, взаимосвязь между низкими значениями углеродного коэффициента и нефтью с достаточной определенностью показать не удалось. Справедливо также, что в районах, для которых свойственны высокие значения углеродного коэффициента, до настоящего времени обнаружено только очень немного залежей нефти и газа. Но такое положение может быть следствием крайне малого общего объема поискового бурения в этих областях, обусловленного нежеланием проводить работы на площадях с высокими углеродными коэффициентами.

¹Еще важнее, чтобы анализировались пробы углей и нефтяных горизонтов, залегающих на одинаковой глубине. - Прим. ред.

В заключение следует указать на существование ряда исключений из первоначального представления о том, что на площадях, характеризующихся высокими значениями углеродных коэффициентов, могут быть обнаружены только газовые, но не нефтяные залежи. Подобные исключения становятся особенно показательными, если попытаться применить закон Хилта к отложениям, которые перекрывают многие современные глубокозалегающие нефтяные залежи. Если бы вблизи этих нефтеносных горизонтов располагались угольные пласты, то во многих случаях они, по-видимому, отличались бы такими высокими значениями углеродного коэффициента, при которых, как полагают, уже не может происходить аккумуляция не только нефти, но и газа. По отношению к выбору объектов для разведочных работ это означает, что высокие углеродные коэффициенты, характерные для углей на какой-либо площади, не должны рассматриваться как достаточное основание для того, чтобы считать эту площадь непродуктивной. Как было уже показано, существование относительно высоких температур и давлений не следует принимать за фактор, несовместимый с аккумуляцией нефти и газа, поскольку они могут быть обусловлены причинами, не влияющими на процессы аккумуляции.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 5

Территории всего земного шара, в пределах которых развиты сколько-нибудь значительные толщи неметаморфизованных отложений, характеризуются одной общей особенностью [15]. На каждой из них мощность осадочных отложений максимальна в центральной части и уменьшается к краевым зонам. Такие территории получили название седиментационных бассейнов (sedimentary basins). В бассейны включаются все районы, в пределах которых известны значительные по мощности осадочные толщи. В них входят не только все открытые до настоящего времени нефтегазоносные провинции, но и все провинции, которые, вероятно, будут открыты в будущем. Карты, показывающие седиментационные бассейны всего земного шара, приведены в работах Уикса [16] и Джестера [17]. [Все сколько-нибудь крупные седиментационные бассейны, представляющие собой в современном тектоническом плане Земли впадины с мощностью отложений более 2±0,5 км, являются нефтегазоносными или вероятно нефтегазоносными бассейнами.]

Седиментационные бассейны имеют часто довольно сложное строение. Они обладают общей для всех них характерной особенностью ‑ все они представляют собой погруженные зоны с мощным осадочным чехлом во внутренних и менее мощным в краевых частях. Однако во всех других отношениях бассейны могут резко отличаться друг от друга - иметь различное строение и генезис. Некоторые седиментационные бассейны действительно представляли собой бассейны осадконакопления (depositional basins), о чем свидетельствуют древние береговые линии, окружающие их по периферии. Другие бассейны являются структурными (structural basins); фактически это региональные замкнутые синклинали. Осадочные образования, выполняющие структурные бассейны, однотипны на его периферии и в центре, отдельные формации здесь распространены шире, а мощности их более однообразны по всей площади, чем в бассейнах осадконакопления. Некоторые территории называются «бассейнами» только на основании современного рельефа земной поверхности, и это название никак не связывается с условиями залегания развитых в их пределах толщ. По-видимому, месторождения нефти и газа могут быть с равной вероятностью обнаружены в обоих этих типах бассейнов, как в их центральных частях, так и на периферии.

Многие седиментационные бассейны имеют смешанное происхождение. В некоторых таких бассейнах строение верхних горизонтов разреза, например горизонтов, залегающих выше поверхности несогласия, указывает на то, что здесь существовал бассейн осадконакопления. В то же время подстилающие слои образуют структурный бассейн. Если площади двух или более бассейнов, имеющих разное происхождение, совпадают в плане, образованный в результате этого совпадения бассейн может рассматриваться как сложный [гетерогенный]. Идеализированный разрез через такой гетерогенный (точнее сказать гетерогенный по вертикали) бассейн показан на фиг. 14-1. Два или более структурных бассейна и бассейна осадконакопления могут совпадать в плане полностью либо только частично или быть совершенно изолированными один от другого. Многочисленные примеры гетерогенных бассейнов можно наблюдать на территории США в Скалистых горах; третичные отложения, залегающие здесь вблизи поверхности, часто образуют бассейн осадконакопления, в то время как подстилающие толщи ‑ структурный бассейн, обычно замкнутый. Во многих из этих примеров

Фиг. 14-1. Схематический разрез бассейна, гетерогенного по вертикали.

Поверхность А частично структурная, но в основном топографическая. Толща В образует бассейн осадконакопления, а толща С - структурный бассейн, причем седиментационные границы развития толщи С располагаются за пределами границ этой толщи на профиле. Размеры бассейна по горизонтали - несколько сотен миль, мощность выполняющих его отложений - несколько миль.

складкообразование предшествовало во времени началу накопления третичных формаций и обусловило локализацию седиментации на ограниченных площадях. В итоге отмечается совпадение двух бассейнов в плане. В других случаях эти молодые бассейны осадконакопления в результате более позднего складкообразования были разделены на несколько структурных бассейнов, располагающихся на площади одного крупного древнего

Фиг. 14-2. Схематический разрез, показывающий развитие бассейна, гетерогенного по простиранию.

Сначала формируется борт В, где развиты прибрежные и шельфовые отложения. Позже складчатость вдоль борта А приводит к образованию депрессии А', В', имеющей форму бассейна. С подобными бассейнами, образованными в два этапа под влиянием палеогеографического и структурного факторов, связано много нефтегазоносных провинций. Несколько примеров таких бассейнов приведены на фиг. 14-3. Размеры бассейна по горизонтали ‑ несколько сотен миль, мощность выполняющих его отложений ‑ несколько миль.

структурного бассейна. Таким образом, одни бассейны могут быть включены в пределы других и создавать сложную картину геологического строения, которую удается понять только после проведения тщательного стратиграфического и структурного анализа.

Другой сложный тип седиментационного бассейна, с которым, по-видимому, особенно тесно связаны нефтегазоносные провинции, образуется в результате двух независимых друг от друга процессов ‑ седиментации и складчатости. Эти процессы протекают в разное время и обусловливают возникновение бассейна. Последовательность этапов развития подобного бассейна представляется следующим образом (фиг. 14-2).

Один борт бассейна (В) сформировался при накоплении отложений, несогласно перекрывающих пологонаклоненную поверхность суши. Такая суша называется щитом, платформой или кратоном [18]. На этом борту бассейна широко распространены образования древних береговых линий.

Фиг. 14-3. Разрезы пяти продуктивных бассейнов, гетерогенных по простиранию.

Нефтегазоносность показана черными кружками. (Разрезы В, Г и Д из Bull. Am. Assoc. Petrol. Geol., соответственно по Tainsh, 34, p. 832, Fig. 2; Funkhouser, Sass, Hedberg, 32, p. 1864, Fig. 3; Link, 36, p. 1515, Fig. 19).

За отложением осадков последовало формирование резких линейных складок и сбросов на противоположной стороне бассейна (А) - в «геантиклинальной полосе» Уикса [19]. В итоге депрессия между А' и В' приобрела форму бассейна, который следует рассматривать как бассейн, сложный [гетерогенный] по простиранию (composite laterally). Формирование этого бассейна происходило в два разделенных во времени этапа. Залежи нефти и газа могут быть приурочены к обоим его бортам. Несколько примеров бассейнов подобного типа, каждый из которых представляет собой продуктивную нефтегазоносную провинцию, приведено на фиг. 14-3. Здесь показаны идеализированные разрезы бассейна Мак-Алистер в восточной Оклахоме (разрез А), Аппалачского бассейна на востоке США (Б), бассейна центральной части Бирмы (В), бассейна Матурин на востоке Венесуэлы (Г) и бассейна Персидского залива на Среднем Востоке (Д).

Гетерогенные по простиранию бассейны характеризуются следующими особенностями.

1. Поскольку на том борту бассейна, где наблюдается несогласное налегание отложений (В на фиг. 14-2), ловушки могли существовать уже со времени, когда коллекторы были перекрыты слабопроницаемыми породами, аккумуляция нефти и газа в залежи могла начаться здесь раньше и протекать гораздо более длительное время, чем на противоположном его борту.

2. Равновесное состояние флюидов, так же как давление и температура во всех коллекторах (резервуарах), во время складко- и сбросообразования на борту А бассейна были нарушены. Этот этап деформаций осадочного чехла явился, таким образом, временем приспособления всех скоплений нефти и газа, расположенных в пределах бассейна, к новым условиям. По мере того как пластовые флюиды вновь приходили в равновесное состояние, все более интенсивно происходили процессы миграции и переформирования залежей. Гидростатические условия при этом могли смениться активными гидродинамическими, а последние - привести к тому, что направление движения пластовых вод оказывалось противоположным первоначальному направлению их движения.

3. Возникает вопрос, где находились нефть и газ, приуроченные ныне к залежам вдоль складчатой стороны бассейна, до начала складкообразования? Очевидно, что породы-коллекторы отлагались на более обширной, чем современные границы бассейна, площади. Они распространялись влево от области, показанной на фиг. 14-2. Первоначальная граница распространения этих отложений, по-видимому, располагалась на некотором неизвестном расстоянии от современного складчатого борта бассейна и была связана либо с древней береговой линией бассейна осадконакопления, либо, что более вероятно, с утонением толщи осадков в сторону открытого моря ввиду недостаточного количества поступающего материала (подобно тому, как это наблюдается за краем материкового шельфа). Нефть и газ, залегающие ныне вдоль складчатого борта (А) седиментационного бассейна, вероятно, поступали из отложений, образовавшихся у этого же борта, поскольку давления здесь были, как правило, выше, чем на противоположном его борту (В), связанном с трансгрессивным прилеганием отложений вдоль древней береговой линии. Видимо, до возникновения дислокаций нефть и газ находились в виде дисперсных частиц как в породах-коллекторах, так и в глинистых породах. После образования складок началась концентрация этих частиц, происходившая до тех пор, пока они не приобретали достаточную плавучесть, чтобы мигрировать в участки с низким уровнем потенциальной энергии, приуроченные к высоко расположенным структурам. Возможно также, что капельки нефти и пузырьки газа двигались вместе с пластовой водой в направлении наклона потенциометрической поверхности до аккумуляции их в ловушке.

Таким образом, на основании изучения отложений, выполняющих перспективно нефтегазоносный седиментационный бассейн, можно сделать следующий вывод: потенциальные возможности бассейна наиболее высокие, если мощность осадочных толщ велика, если эти толщи представлены морскими образованиями, имеют разнообразный литологический характер и не метаморфизованы. Седиментационные бассейны обычно являются гетерогенными, и современная пространственная форма выполняющих их толщ может иметь лишь весьма отдаленную связь или вообще не иметь никакой связи с формой ранее располагавшегося здесь бассейна или первоначального бассейна осадконакопления. Образование нефти, вероятно, определяется в основном условиями, существовавшими в бассейнах осадконакопления, в то время как миграция углеводородов и аккумуляция их в залежи более тесно связаны со структурными бассейнами и с тектоническим развитием последних на протяжении их геологической истории.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 6

В настоящее время геологи не располагают достаточно точными зна­ниями о нефтегазообразовании; в лучшем случае они приблизительны. Мы еще не можем полностью установить связь между органическим веществом (ОВ), с одной стороны, и нефтью и газом-с другой. Если в отложениях рассматриваемого региона обнаруживаются нефте- и газопроявления, то на каком-то этапе, видимо, должен был существовать источник, поставлявший углеводороды (УВ). Хотя было бы очень важно иметь возможность сказать, что какие-либо богатые органическим веществом или темноокрашенные породы, видимо, являются нефтепроизводящими (а многие исследователи так и говорят), все же выходы нефти или признаки «живой» нефти в скважинах являются гораздо более надежными показателями перспективности района - это нефтепроявления или установленные в скважинах непромышленные скопления нефти. Обнаружение нефте- и газопроявлений на поверхности привело к открытию почти всех нефтегазоносных провинций земного шара [20] (см. также стр. 26-30: глава 2, условия залегания). К прямым признакам нефтегазоносности региона относятся высачивания нефти на поверхность, нефтяные источники, присутствие окисленной нефти в трещинах обнажающихся пород, данные хроматографических анализов, а также глубинные нефтегазопроявления в скважинах в виде выпотов и примазок нефти в керне, на обломках пород в шламе и следов ее в буровом растворе. Косвенные признаки нефтегазоносности могут быть получены в результате изучения электрокаротажных диаграмм, флуоресценции (люминесценции) под ультрафиолетовыми лучами или путем измерения электрического сопротивления экстракта, полученного из шлама и бурового раствора и подвергнутого нагреванию в вакууме.

Если обнаружена «живая» нефть, содержащая растворенный газ, это гораздо более важный признак, чем «мертвые» остатки нафтидов, таких, как асфальт или кир. Керн с высачивающимися каплями нефти¹ обычно еще не означает, что формация, откуда он поднят, содержит промышленные залежи, но он может рассматриваться как указание на присутствие жидких углеводородов в регионе.

Возможность присутствия нефти или газа в проницаемых породах тесно связана с характером пластовых вод. Пластовые воды - связанные, краевые или подошвенные - встречаются во всех промышленных скоплениях нефти и газа. Хотя некоторые залежи со всех сторон контактируют с породами, т.е. являются литологически замкнутыми, большинство их плавает на поверхности подстилающих пластовых вод [т.е. находится в незамкнутых ловушках]. Если пластовая вода пресная или же концентрация солей в ней невелика, это означает, что либо осадки,

¹Интересно, что в таких образцах керна, когда они только что подняты из скважины, заметны лишь очень слабые нефтепроявления или даже нет их совсем. Высачивание капель нефти из породы начинается некоторое время спустя. Одно из объяснений этого явления заключается в том. что нефть в породе находится в отдельных, не связанных между собой участках и что количество растворенного в ней газа недостаточно, чтобы вызвать вытеснение нефти, обусловленное расширением газа при снижении пластового давления до атмосферного при выходе нефти на поверхность. Другое объяснение сводится к тому, что проницаемость пород настолько низкая, что для вытеснения нефти при температуре и давлении в поверхностных условиях требуется определенное время.

формирующие воды, отлагались в континентальной обстановке, либо на протяжении геологической истории создавались такие гидродинамические условия, которые способствовали проникновению в формацию пресных вод, вытеснивших первоначально существовавшие здесь соленые воды. Обильное поступление под давлением пластовой воды в ствол скважины указывает на то, что содержащая эту воду формация сложена проницаемыми породами с развитой системой связанных между собой пор - системой, по которой нефть и газ, если они присутствуют в данной формации, могли мигрировать в ловушки. Обильные притоки пластовой воды при условии нормального пластового давления являются, таким образом, положительным признаком, поскольку они свидетельствуют о благоприятных условиях для миграции углеводородов и аккумуляции их в залежи.

В нескольких регионах, где отмечаются многочисленные нефтепроявления в обнажающихся на поверхности породах, высачивания нефти и нефтяные источники, до сих пор не обнаружены промышленные скопления нефти и газа. Выдающимся примером в этом отношении является остров Куба. Несмотря на то что здесь известно множество нефтепроявлений на поверхности и асфальтовые отложения, добываемое количество нефти совершенно незначительно по сравнению с кажущимися перспективами этого района. Обнаружить значительные месторождения нефти или газа не удалось, хотя на Кубе в течение многих лет выполнялась широкая программа разведочных работ [21]. Примерно таково же положение в Австралии, Новой Зеландии и Бразилии, где известны многочисленные нефте- и газопроявления на по­верхности, но до настоящего времени было открыто только очень небольшое количество промышленных залежей [22]. [Эти сведения устарели. И на Кубе, и в Австралии в последние годы открыты нефтяные и газовые месторождения.] Отсутствию промышленных месторождений в местах, где встречается множество нефтепроявлений, можно дать несколько объяснений: 1) большинство или даже все существовавшие здесь залежи могли быть обнажены в результате эрозии и разрушены на поверхности, на что указывают широко развитые выветрелые породы; 2) процессы метаморфизма [катагенеза] могли обусловить удаление из отложений газа и легких фракций нефти, после чего в породах остались только более тяжелые ее компоненты; или 3) что наиболее вероятно, объем проведенных буровых работ в этих регионах недостаточен, чтобы доствоверно определить их потенциальные возможности, и редкость промышленных месторождений нефти здесь только кажущаяся.

Некоторые явления, ранее рассматривающиеся как доказательство наличия нефтематеринских пород, в действительности не имеют такого большого значения. Присутствие пустот от выщелачивания раковин ископаемых и каверн, заполненных нефтью, безусловно представляет большой интерес для геолога, но, вероятно, не может существенно повлиять на оценку перспектив нефтегазоносности региона, поскольку эта нефть могла целиком образоваться из органических остатков, первоначально находившихся в подобных пустотах. [Это совершенно неправильное утверждение, так как в теле организма много воды и таких соединений, которые не могли дать начало нефти]. Залегание в разрезе темно-серых и черных битуминозных сланцев или известняков далеко не так показательно, как реальные признаки нефти или газа в породах. По распространенному мнению, темноокрашенные породы, включающие органические остатки, обычно способны генерировать углеводороды. Однако следует отметить, что эти породы содержат органическое вещество, которое не было преобразовано в нефть в пластовых условиях. ‑ [Автор не учитывает стадийности процесса нефтеобразования и не разграничивает признаки отложений, способных стать нефтематеринскими, но еще не ставших таковыми, и признаки отложений, уже генерировавших нефть. В породах, содержащих нефтематеринское вещество, долгое время присутствует лишь дисперсная недозрелая микронефть; такие породы являются потенциально нефтематеринскими (ПНМ). Только после главной фазы нефтеобразования, когда дополнительно образуется много битумоидов, а в их составе микронефть, теперь уже обогащенная низкокипящими углеводородами, породы становятся собственно нефтепроизводившими (НПШ). Если есть основания считать, что они и в настоящее время генерируют нефть, то их можно именовать нефтепроизводящими (НПЩ). Одним из признаков таких пород (НПЩ или НПШ) является широкое распространение в них следов миграции микронефти (нефти)].

Если на ранних этапах разведочных работ в регионе не отмечено каких бы то ни было признаков нефти и газа, то это не обязательно означает, что такой регион бесперспективен в отношении нефтегазоносности. Признаки нефтегазоносности могут быть не замечены из-за слабой изученности района; нефтегазопроявления могут отсутствовать на поверхности из-за специфических условий; и, наконец, изучаемая формация, обнаженная на поверхности или испытанная скважиной, может не содержать нефти и газа. Легкие нефти, как правило, улетучиваются, не оставляя после себя никаких следов. Таким образом, не следует прекращать разведочные работы, даже если в регионе нет видимых нефте- и газопроявлений. Однако, если такие проявления имеются, шансов на открытие промышленных скоплений углеводородов значительно больше.

В заключение можно сказать, что выявление реального присутствия нефти и газа в рассматриваемом регионе имеет первостепенную важность для оценки перспектив его промышленной нефтегазоносности. Чем больше количество нефтепроявлений и чем они эффектнее, тем большее значение они имеют как индикатор промышленной нефтегазоносности геологического разреза. И если отмечаются небольшие скопления тяжелых нафтидов на поверхности или нефтепроявления в скважинах, то можно ожидать открытия более крупных ловушек, содержащих, соответственно, более крупные залежи.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 7

Локальные участки у края выклинивающегося вверх по восстанию проницаемого пласта-коллектора (резервуара) часто представляют собой ловушки, в которых аккумулируются нефть и (или) газ. Подобное те выклинивание в региональном масштабе может препятствовать миграции углеводородов из региона и обусловливать его промышленную нефтегазоносность. Выше уже было показано, как локальные изменения стратиграфической полноты разреза, а также пористости и проницаемости коллекторов иногда без влияния других факторов, а иногда в комбинации с антиклинальными складками, сбросами и гидродинамическими градиентами приводят к образованию ловушек, в которых возникают нефтяные и газовые залежи. Эти представления о влиянии локальных участков выклинивания проницаемых пластов, возможно в комбинации с благоприятными гидродинамическими условиями, на нефтегазонакопление, по-видимому, могут быть распространены и на региональные зоны выклинивания. Последние, вероятно, при соответствующей региональной гидродинамической обстановке также образуют нефтяные провинции, содержащие множество нефтяных и газовых залежей. Куполовидное поднятие Нашвилл в Теннесси [24] представляет типичный пример залегания поверхностей несогласия в геологическом разрезе крупной растущей тектонической структуры. На фиг. 14-8 показана палеогеологическая карта этого района к началу времени чаттануга (миссисипий); каждая из линий на карте представляет собой границу выклинивания слоев вверх по их восстанию. На фиг. 14-9, на которой показан поперечный разрез большого купола, обращают на себя внимание многочисленные поверхности несогласия в нижнепалеозойских отложениях, сближающиеся к вершине структуры. Срезая нижележащие толщи пород, эти поверхности несогласия определили формирование зон выклинивания протяженностью во много тысяч миль.

Региональные зоны выклинивания проницаемых отложении в некоторой степени могут быть похожи на локальные участки выклинивания, такие. как срезание слоев над куполовидным поднятием Нашвилл и фацпальные переходы доломитов в известняки или песчаников в глинистые породы. Если бурение скважин не проводилось в относительно недавнее время, то данных о региональных гидродинамических градиентах, как правило, недостаточно. Конечно, сочетание регионального, направленного вниз по падению слоев движения пластовых вод с региональным выклиниванием проницаемых отложений вверх по восстанию должно привлекать особое внимание разведчиков нефти.

На фиг. 14-10 можно видеть две полосы залежей нефти и газа, связанные с региональными зонами выклинивания проницаемых отложений вверх по восстанию слоев. Эти полосы залежей располагаются на противоположных склонах свода Цинциннати. Песчаники Клинтон (силур) выклиниваются к западу на восточном склоне свода, а проницаемые доломиты Трентон - к юго-востоку на северо-западном его склоне (см. также стр. 293). Песчаники Клинтон замещаются глинистыми породами и известняками, а доломиты Трентон переходят в слабопроницаемые известняки. Многочисленные примеры выклинивания вверх по восстанию песчаных пластов наблюдаются в провинции Галф-Кост в Техасе и Луизиане (см. также фиг. 7-6). Один из таких примеров представлен на фиг. 14-11, где показан разрез зоны выклинивания олигоценовых песчаников Хет и Фрио. Следует напомнить, что эти зоны

Фиг. 14-8. Палеогеологическая карта предчаттанугской (миссисипской) поверхности несогласия, купол Нашвилл, центральный Теннесси (Wilson, Stearns, Bull. Am. Assoc. Petrol. Geol., 47, p. 828, 1963).

Разрез купола показан на фиг. 14-9. D - девон; S - силур; М - Мейсвилл; М' - мейсвилл (верхний ордовик); N - нашвилл (средний ордовик); R - ричмонд; R' -ричмонд (верхний ордовик).

Фиг. 14-9. Разрез купола Нашвилл в центральном Теннесси (Wilson, Stearns, Bull. Am. Assoc. Petrol. Geol., 47, p. 825, 1963). Длина разреза около 200 миль. Видны поверхности несогласия в дочаттанугских отложениях. С каждой из них связаны многочисленные зоны срезания отдельных горизонтов, трансгрессивно перекрытые более молодыми отложениями.

D - девон (m - средний; l - нижний); S - силур; R - ричмонд; М - мейсвилл; Е - иден; N - нашвилл; S-R - стоунс-ривер; К - нокс.

выклинивания существовали еще до того, как процессы формирования тектонических складок и соляных куполов привели к возникновению ловушек в этих формациях, и уже в то время представляли собой региональную полосу распространения ловушек, способных задерживать углеводороды на раннем этапе их миграции. Вдоль восточной части озера Маракайбо в Венесуэле располагается полоса, к которой приурочен ряд высокопродуктивных залежей, известных под названием месторождения Боливар-Кост [25] (фиг. 14-12).

Фиг. 14-10. Карта распространения погребенных зон выклинивания проницаемых доломитов Трентон (ордовик) и песчаников Клинтон (силур) на склонах свода Цинциннати в Индиане и Огайо (Bull. Am. Assoc. Petrol. Geol., 27, p. 891, Fig. 3, 1943).

Связь нефтяных и газовых залежей с зонами выклинивания совершенно очевидна. Зона выклинивания проницаемых доломитов Трентон обусловлена их замещением непроницаемыми известняками, а песчаники Клинтон переходят в глины вдоль древней береговой линии.

1 - пористые доломиты Трентон; 2 - нефтяные и газовые залежи; з - региональное простирание и направление падения; 4 - песчаники Клинтон.

Эта полоса образована отдельными крупными песчаными телами, локальными переходами и линзами проницаемых пород, которые протягиваются вдоль региональной зоны фациального замещения вверх по восстанию слоев, сопровождающейся антиклинальными складками и тектоническими разрывами. Третичные песчаники на этих месторождениях содержат множество залежей, образующих совместно одну из крупнейших в мире площадей нефтенакопления. Общие извлекаемые запасы составляют здесь 7-8 млрд. баррелей.

Приуроченность ряда нефтегазоносных провинций к региональным зонам выклинивания, возможно, объясняется тем, что такие зоны благоприятны для образования нефти и газа. Однако то обстоятельство, что многие из зон выклинивания, по-видимому, не связаны с древней береговой линией, наиболее богатой органическим веществом, свидетельствует о справедливости этого положения только для некоторых провинций. Более удовлетворительным объяснением связи многих нефтеносных провинций с зонами выклинивания представляется следующее. Можно полагать, что вдоль зоны выклинивания уже на ранних стадиях, до формирования локальных структурных ловушек, происходила аккумуляция

Фиг. 14-11. Разрез вкрест древних береговых линий третичных формаций провинции Галф-Кост в южном Техасе (Deussen, Owen, Bull. Am. Assoc. Petrol. Geol., 23, p. 1626, Fig. 3; p. 1630, Fig. 5, 1939).

Видны седиментационные зоны выклинивания проницаемых песков. Внизу справа дана схема того же разреза. В - бомонт; L - лисси; G - голиад; La - лагарто; О - оквилл; С - катахула; F-v - поверхность Фрио-Виксберг; J - джэксон; F - песчаники Фрио; а - выклинивание морских сланцев. На врезке слева: АА'- линия разреза; ВВ'- граница выклинивания песчаников «А».

мигрирующих углеводородов. Сформировавшиеся позже складки только локализовали в залежи нефть и газ, концентрация которых в регионе была уже к этому времени значительной. Антиклинальные же складки, расположенные ниже по региональному падению слоев, могут оказаться непродуктивными, поскольку они образовались слишком поздно. Края выклинивающихся по восстанию коллекторских пластов представляли собой площади, где нефть и газ сохранялись в период между образованием зоны выклинивания и формированием первых антиклинальных складок (на фиг. 12-25 эти площади не заштрихованы). Последовательность такого развития региона схематически показана на фиг. 14-13. На верхнем рисунке А показана зона выклинивания проницаемых пород, где на первой стадии аккумулировались углеводороды. На рисунке Б видно, что образовавшиеся складки привели только к перераспределению нефти и газа и накоплению их в локальных ловушках; складки, расположенные ниже по падению, остались незаполненными. Подобное же объяснение было предложено Линком [26], изучившим историю формирования залежи в антиклинальной складке Тернер-Валли (фиг. 14-14).

Зоны выклинивания проницаемых пород могут образоваться в результате либо фациального перехода этих пород в слабопроницаемые отложения, либо осадконакопления у береговой линии древнего бассейна, либо несогласного трансгрессивного перекрытия слабопроницаемыми толщами срезанных проницаемых пластов. Выявление причины, обусловившей формирование зоны выклинивания, не столь важно; гораздо большее значение, по-видимому, имеет изучение распространения проницаемой толщи и особенно очертаний выклинивающегося вверх по восстанию края этой толщи. Иными словами, выклинивание вверх по восстанию проницаемых отложений, вне зависимости от генезиса этого выклинивания, является благоприятным геологическим фактором как для концентрации нефти и газа в залежи, так и для предотвращения рассеивания и разрушения углеводородов. Чем больше таких зон выклинивания может быть установлено в перспективной провинции, тем больше шансов доказать ее промышленную нефтегазоносность. Застойные гидростатические условия или, еще лучше, наличие направленного вниз по падению движения пластовых вод следует рассматривать как фактор, резко повышающий перспективность региона.

Фиг. 14-12. Карта распространения нефтяных месторождений в западной Венесуэле.

Месторождения Боливар-Кост расположены вдоль восточного побережья озера Маракайбо. Ловушки, содержащие продуктивные залежи, связаны с антиклинальными складками и разломами, приуроченными к зоне фациального замещения песчаников глинами вверх по восстанию слоев. Разрез месторождения Лагунильяс этой зоны приведен на фиг. 7-13.

Фиг. 14-13. Схема формирования залежей углеводородов в нефтегазоносном районе (Bull. Am. Assoc. Petrol. Geol., 27, p. 901, Fig. 13, 1943).

A - аккумуляция углеводородов на раннем этапе в расположенной вверх по восстанию слоев зоне выклинивания проницаемых пород-коллекторов. Б - более поздняя локализация залежей углеводородов в ловушках, формирующихся вблизи зоны выклинивания. Ловушки, находящиеся ниже по падению, за пределами зоны первоначальной аккумуляции, лишен залежей, поскольку эти ловушки сформировались слишком поздно, уже после того, как углеводороды мигрировали в зону выклинивания.

Не нашли то, что искали? Воспользуйтесь поиском:

studopedia.ru

Бурение скважины желонкой: обзор технологии работ

Как обеспечить собственный участок и дом достаточным количеством чистой воды? Иногда самый простой ответ на этот вопрос – устройство скважины. Если нанимать бригаду дорого, а навыки и желание тяжело поработать имеются, пробурить ее можно и самостоятельно. Методы, с помощью которых можно добыть воду из недр матушки-земли, бывают разными.

Среди них бурение скважины желонкой занимает вполне достойное место. Чаще всего желонирование используется в комплексе с вращательным колонковым методом для извлечения рыхлых несвязных пород: песков, гравийных отложений. Бывает, что без использования желонки вообще невозможно поднять с забоя разрушенный грунт.

Мы расскажем о том, как производятся буровые работы при использовании желонки. У нас вы узнаете, как грамотно пробурить водозаборную скважину на загородном участке, применяя простейший самодельный буровой инструмент. С учетом наших рекомендаций вы с минимальными затратами обустроите источник воды.

Общие понятия о процессе бурения

Бурение желонкой представляет собой так называемый ударно-канатный способ бурения. В качестве бурильного инструмента используется желонка – тяжелый, полый, длинный и узкий снаряд, который роняют в шахту скважины с высоты в несколько метров.

Под тяжестью желонки слои грунта разрушаются и попадают в полость снаряда. Желонку вынимают, очищают от грунта, а затем снова бросают в шахту.

Процесс повторяют снова и снова до тех пор, пока не дойдут до водоносного слоя и не пройдут его. Хотя при описании процесс выглядит простым, он может быть долгим и трудоемким.

Однако у ударно-канатного бурения есть немало преимуществ по сравнению с другими методами. Например, при ручном бурении с помощью желонки обычно в ствол не подается вода, как это часто делается при использовании шнекового или роторного бурения.

В результате грунт в скважине не намокает, а это снижает риск ослабления или разрушения ее стенок. Еще один плюс – точное определение водоносного слоя.

При “мокром” бурении понять, что долгожданная вода наконец-то появилась, не всегда просто. Даже опытные буровики порой не сразу опознают этот момент и продолжают бурение. Кроме того, считается, что и дебит у “сухих” скважин повыше, чем у “мокрых”.

Желонка используется при устройстве скважин в сыпучих обломочных породах, наполненных водой. Инструмент оснащают клапаном, чтобы захватывать и поднимать наверх больше породы за один прием

Выбирая между желонкой и шнеком, некоторые мастера руководствуются следующими соображениями. У шнековых установок с промывкой, которые производит современная промышленность, имеются ограничения по глубине бурения.

И мощность таких установок составляет 12 кВт. Найти мотор-редуктор, обеспечивающий такую мощность в бытовых условиях, затруднительно.

Но редуктор мощностью всего 2,2 кВт поднимает груз весом около одной тонны. Даже очень тяжелую желонку такой механизм поднимет без труда. Остается лишь бросить желонку вниз, чтобы получить достаточно сильный удар, способный разрушать достаточно плотные породы. Таким образом, при меньших энергозатратах получается более эффективное воздействие.

Кроме того, собрать желонку из подручных средств будет проще и быстрее, чем шнек, конструкция которого заметно сложнее. Известны случаи, когда с помощью самодельной желонки, треноги и мотора удавалось пробить скважину глубиной более 40 метров, хотя ушло на выполнение этой работы несколько месяцев.

Что необходимо учесть при работе?

Для начала не помешает предусмотреть возможные проблемы. Конечно, каждая скважина обладает индивидуальными характеристиками.

Бурение на расстоянии всего пары десятков метров может проходить по разному сценарию. Но знание примерного состава грунта и слоев, которые он включает, позволит составить предварительный план, запастись необходимыми инструментами и т.п.

Чем более тяжелое и вязкое вещество нужно вынуть на поверхность, тем сложнее будет работать желонкой. Проще всего справиться с сухим песком. А вот на плывунах работа может длиться бесконечно, при этом скважина почти не углубляется. Некоторые мастера рекомендуют в этом случае выполнять бурение с одновременной промывкой, погружая обсадную трубу как можно быстрее вперед желонки.

Практически невозможно преодолеть с помощью желонки слои тяжелой глины. На грунтах такого типа бурение эффективнее выполнять другими способами.

Чтобы выбрать слой суглинков, используют стакан: узкий длинный инструмент с острой нижней кромкой и без клапана. Его также бросают в шахту с высоты в несколько метров. Затем стакан вынимают и очищают через узкое вертикальное отверстие, сделанное в его боку. Иногда такое отверстие делают и в желонке.

Для бурения особо вязких пластов грунта ударно-канатным методом используют стакан – длинную трубу с заостренной нижней кромкой и узким отверстием, проделанным вдоль стакана

Такая работа по суглинку продвигается тяжело и медленно. Стоит оценить затраты труда и времени, возможно, имеет смысл предпочесть шнековое бурение ударному методу. Чтобы оценить состав грунта, на котором будет выполнено бурение, есть два способа. Дешевый – расспросить соседей, у которых уже есть скважина, и дорогой – заказать буровые работы у специалистов.

Обычно для скважины выбирают место, где рельеф понижается, считается, что так будет ближе к водоносному слою. Некоторым умельцам с помощью желонки удалось пробурить вполне приличную скважину прямо в подвале своего дома, поскольку станок или тренога для желонки – сооружение относительно компактное.

Следует помнить, что подобные работы можно проводить только в достаточно просторном подвале с высоким потолком. В этом пространстве предстоит не только поместить буровую установку, но и выполнять наращивание обсадной трубы.

Если пол и потолок пока отсутствуют, лебедку можно закрепить на стропилах. Кроме того, следует считаться с большим количеством грязной воды, которая будет поступать из скважины во время бурения и может залить все вокруг. Бурение разумнее проводить в сухое время года.

Бурение желонкой – работа довольно грязная, нужно предусмотреть место, в которое будет высыпан вынутый из устройства отработанный грунт

Чаще всего это делают летом. Вполне эффективны буровые работы и в зимний период, хотя преодолеть слой промерзшего грунта может быть не просто. А вот весной во время паводка бурить скважины не рекомендуется. Мокрый грунт вынимать сложнее, да и определить момент появления воды в скважине будет труднее. Осенью работы обычно приходятся на ноябрь.

Инструменты и применяемые материалы

Для начала понадобится собственно желонка, а также установка, к которой ее нужно подвесить. Желонка для бурения – снаряд достаточно тяжелый.

При сильном желании заполненное устройство можно, конечно, вытащить из шахты вручную, но для этого понадобится немало сил и времени. Чтобы облегчить работу, над местом бурения устанавливают вышку в виде треноги.

Для подвешивания желонки над рабочим отверстием используют специальную треногу. Обычно ее выполняют из металла, но подойдут и деревянные балки

Она может быть выполнена из металла или из дерева. Наверху закрепляют блок, через который пропускают металлический трос. На этом тросе подвешивают желонку. Так для ее вытаскивания понадобится меньше усилий.

Подъем выполняют с помощью мотора-редуктора со сцеплением, на вал которого наматывается трос. Чтобы после удара желонки барабан не раскручивался по инерции, можно установить специальное устройство для торможения.

При коммерческом использовании применение тормоза вполне оправдано, но для собственных нужд можно обойтись и без него. С помощью сцепления можно регулировать усилие, поступающее на устройство, учитывая при этом момент удара. В процессе работы устройства способность определять этот момент быстро приходит с опытом.

В нижней части желонки приваривают или привинчивают башмак со встроенным в него лепестковым клапаном. Клапан не позволяет грунту высыпаться из снаряда, когда ее поднимают на верх, чтобы очистить

И установку, и желонку, и стакан можно сделать самостоятельно или приобрести в строительных магазинах. О том, как сделать буровой инструмент для ручного бурения, подробно написано в этой статье.

Для изготовления желонки понадобится отрезок металлической трубы длиной несколько метров. Наружный диаметр такой трубы должен быть меньше внутреннего диаметра обсадной трубы примерно на 20 мм. Например, если используется стальная обсадная труба на 133 мм, для желонки волне подойдет труба с диаметром 108 мм.

Толщина стенок трубы для желонки может достигать 10 мм. При этом следует соотнести размеры и вес устройства. Она должна быть достаточно тяжелой, чтобы при ударе о грунт эффективно его рыхлить и захватывать.

Но следует помнить, что для вытаскивания заполненной желонки должно хватать мощности редуктора. Вполне достаточным считается вес в 30-40 кг. Когда труба выбрана, необходимо внизу приварить или прикрутить башмак с лепестковым клапаном.

Вверху приваривают защитную решетку и ручку, к которой следует прикрепить металлический трос. Нижнюю часть можно заточить внутрь, чтобы улучшить рыхление грунта. Вместо затачивания края можно внизу приварить заостренные прутья или острые куски металла.

Примерно таким же образом из куска трубы изготавливают стакан для бурения скважины на суглинках. Только в этом случае клапан не нужен, а по длине трубы делают вертикальные отверстия, чтобы можно было очистить стакан от вязкого грунта.

Помимо установки и желонки, понадобится ряд материалов и приспособлений:

  • обсадные трубы в нужном количестве;
  • хомуты, чтобы зафиксировать трубы во время сварки или пайки;
  • садовый бур;
  • место для сбора отработанного грунта;
  • емкость или место для слива загрязненной воды;
  • сварочный аппарат или паяльник для труб ПВХ.

В формировании ствола скважин можно использовать как металлические, так и пластиковые обсадные трубы. Нижняя часть первой пластиковой трубы должна быть снабжена специальным башмаком, который облегчает процесс опускания трубы в шахту скважины. Пластиковые трубы спаивают с помощью предназначенного для этих целей паяльника.

Освоить работу с этим инструментом несложно, но перед началом работ лучше взять несколько уроков у более опытных мастеров или потренироваться на отрезках ненужных труб. С металлическими трубами работать немного проще, поскольку они прочнее, чем пластиковые конструкции.

Нередко такую трубу просто забивают в шахту, чтобы опустить ее на нужную глубину. Для сварки металлических труб используют сварочный аппарат, если навыка работы с таким оборудованием нет, их придется освоить. Чаще всего для скважин используют трубы с резьбовым соединением, но сварка считается более надежной.

Описание технологии бурения

Если все материалы и инструменты приготовлены, можно приступать к работам. Над выбранным местом для скважины устанавливают треногу. На блок заводят металлический трос желонки, и наматывают его на вал редуктора. В грунте под желонкой с помощью садового бура проделывают отверстие такого диаметра, чтобы в него проходила желонка.

Желонку используют для проходки по рыхлым несвязным грунтам: пескам, галечниковым, гравийным, щебенистым отложениям Этап 1: Перед началом бурения почву с корнями растений и верхние грунтовые слои лучше выкопать лопатой. Глубина стартового шурфа примерно 0,7 - 1,0 м Этап 2: Желонку бросаем в шурф на забой. Инструмент, ударяясь о землю разрушает грунт. Разрушенный грунт проталкивается внутрь бура, захлопнувшийся следом за ним клапан удерживает его внутри трубы Этап 3: Устанавливаем обсадку для предотвращения осыпания стенок и соблюдения вертикальности ствола. Укрепляем стенки шурфа. Фиксируем положение обсады, чтобы при заглублении ствол не перекосило Этап 4: Желонка плохо разрушает и практически не захватывает глинистые грунты: суглинки с супесями. Если они есть в разрезе, надо запастись шнековым инструментом Этап 5: Шнек опускаем в обсадную трубу, наращиваем инструмент штангами до требующейся глубины. Ввинчиваем собранную таким способом буровую колонну в забой и извлекаем из ствола шнек с осевшей на лопастях породой Этап 6: Вручную желонкой можно пройти 5 - 7 м. Затем процесс бурения слишком усложняется из-за глубины выработки и веса инструмента с выбуренной породой. Облегчит работу буровая установка Этап 7: В вершине самодельной буровой установки закрепляют блок, через который перекидывают канат, соединенный с желонкой. Для спуска и подъема снаряда можно использовать лебедку Сфера применения желонки в буренииРытье шурфа перед бурением скважиныВыбуривание супеси шнекомСамодельный станок для глубокой выработкиМеханизация бурения желонкой

Можно начинать бурение. Поднятую над отверстием желонку просто бросают вниз. Удар разрыхляет грунт, клапан раскрывается, и полость желонки заполняется грунтом.

Обычно делают не один, а три-четыре удара, чтобы желонка максимально наполнилась грунтом. Потом ее поднимают из шахты наверх, раскрывают клапан и высыпают из устройства захваченный грунт.

Опустошенную желонку снова сбрасывают в шахту несколько раз и т.д. Постепенно шахта становится глубже. Чтобы защитить ее стенки от обрушения, нужно опустить внутрь первую обсадную трубу.

С помощью желонки скважину можно пробурить даже в подвале, особенно, если пол и потолок пока не настелены. Вместо треноги в качестве опоры для устройства используют стропила, на которых и закрепляют блок для троса желонки

Трубу удерживают с помощью специальных хомутов, чтобы она не опустилась слишком глубоко. По мере необходимости длину обсадной трубы наращивают, приваривая, прикручивая или припаивая трубы друг к другу.

Считается, что неглубокую скважину можно сначала пробурить, а затем уже установить трубы, но гораздо разумнее устанавливать трубы сразу. Это точно предохранит стены скважины от обрушения.

Очень важно правильно установить в шахте первую обсадную трубу. Ее положение выставляют по уровню и тщательно фиксируют. Положение остальных труб выставляют по первой трубе. Если с самого начала труба будет поставлена с перекосом, это может затруднить бурение, установку насоса фильтра, обслуживание скважины и т.п.

Верхний слой суглинистого грунта обычно очень плотный из-за большого количества глинистых включений. Его проходят с помощью стакана, устройство которого описано выше. Действуют так же, как и желонкой: бросают его в шахту, вынимают, очищают и т.д. Пройдя этот сложный участок, можно снова использовать желонку.

Чтобы соединять обсадные трубы было удобнее, верхний и нижний край трубы, которую присоединяют к уже углубленной колонне, фиксируют специальными хомутами или металла или дерева

Сложности могут возникнуть и при прохождении плывуна, если в процессе бурения ствол пойдет через этот богатый водой слой. Некоторые мастера считают, что для ускорения работы имеет смысл подать в обсадку воду и вычерпывать жидкий грунт.

Обычно же бурение желонкой выполняется “всухую”. Это позволяет достаточно точно определить появление в скважине воды, свидетельствующее о том, что водоносный слой достигнут.

Прекращение бурения, как только в шахте появится вода, это распространенная ошибка новичков-бурильщиков. Рекомендуется продолжать бурение и углубиться в следующий пласт грунта примерно на полметра. Таким образом будет обеспечен максимальный дебит скважины. Затем остается скважину прокачать, опустить в нее насос, обустроить оголовок и т.д.

Выбор: с фильтром или без?

Чтобы предотвратить попадание в скважину загрязнений, внутрь ствола устанавливают вторую трубу со скважинным фильтром. Его изготавливают из длинного отрезка трубы, диаметр которой должен быть меньше, чем диаметр обсадной трубы. Верхнюю часть трубы используют под сальник, а в средней части проделывают множество отверстий.

На отрезке трубы, из которой изготавливают фильтр для скважины, следует проделать ряд частых и достаточно больших отверстий. Такая перфорация обесчпечит быстрое поступление отфильтрованной воды в скважину

Перфорированный участок закрывают сеткой галунного плетения, но в крайнем случае подойдет и обычная мелкоячеистая сетка, например, с параметрами 0,2Х0,13. Сетку можно зафиксировать проволокой.

Нижняя часть фильтра представляет собой отстойник, там перфорация не нужна. Если в скважину, устроенную шнековым способом, можно спустить фильтр с помощью соединенных между собой штанг, то при выполнении ударно-канатного бурения фильтр доставляют с помощью металлического троса.

Перфорированный фильтр для скважины следует закрыть металлической сеткой галунного плетения и зафиксировать проволокой из нержавеющей стали. Вместо сети галунного плетения можно взять обычную, достаточно мелкую сетку

Это не позволяет прижать фильтр с силой, чтобы обеспечить герметичность конструкции при соединении с сальником. В таком случае можно эффективно использовать ПСУЛ – предварительно сжатую уплотнительную ленту. Этот материал широко применяется при монтаже ПВХ окон.

Такую ленту следует намотать на край фильтра и сразу же опустить в шахту, поскольку ПСУЛ довольно быстро расширяется. Если фильтр опущен немедленно после наматывания ленты, она расширится в низу и обеспечит надежную герметизацию фильтра. После того, как фильтр опущен вниз, обсадную трубу аккуратно поднимают вверх.

ПСУЛ – предварительно сжатая саморасширяющаяся уплотнительная лента используется при монтаже окон ПВХ, но подходит для создания сальника скважинного фильтра. Нужно намотать ПСУЛ примерно на 30 см в верхней части фильтра и сразу же опустить его в скважину

При этом большая часть фильтра должна оказаться ниже уровня края обсадной трубы. Для подъема трубы можно использовать два пятитонных домкрата. Вынутую на поверхность часть трубы срезают или отвинчивают. Чтобы хомут не скользил, к выступающему куску трубы приваривают куски арматуры.

Ударно-канатный способ бурения позволяет создать бесфильтровую скважину. Чтобы обустроить ее таким образом, необходимо опустить обсадную трубу ниже водоносного слоя примерно на 0,5 метра. При “мокром” шнековом или колонковом бурении затруднительно бывает извлечь из скважины керн. Желонка легко извлекает рыхлые, насыщенные водой обломочные породы.

Схема устройства бесфильтровой скважины: 1 – скважина; 2 – водоносный – горизонт; 3 – водоприемная воронка; 4 – кровля; 5 – обсадная колонна; 6 – песок; 7 – полость, образованная в процессе откачки песка эрлифтом

После того, как обсадная труба прочно установлена, в скважину опускают два шланга. По одному из них в скважину подается поток воды, а по второму с помощью компрессора нагнетают воздух. Таким образом, получается так называемый эрлифт, а поток воды предотвращает образование песчаной пробки.

В результате по обсадной трубе пойдет смесь воды, песка и воздуха, которую необходимо слить в отдельную емкость. Когда смесь отстоится, следует измерить объем намытого из скважины песка. Согласно справочникам, каждый кубический метр такого песка равен примерно 4,5 кубометрам дебита.

С колонковым и шнековым способом бурения водозаборной скважины познакомит другая статья, с которой мы советуем ознакомиться.

Выводы и полезное видео по теме

Видео #1. Наглядная демонстрация бурения скважины желонкой:

Видео #2. Сочетание шнекового бурения по твердому грунту и использование желонки, чтобы пройти мелкий насыщенный водой песок:

Видео #3. Интересный вариант устройства желонки и стакана для бурения:

У бурения ударно-канатным способом есть немало преимуществ перед более распространенным шнековым методом. Желонку и прочие приспособления несложно сделать из подручных материалов. Процесс бурения тоже прост, особенно, если возможные проблемы будут предусмотрены в самом начале.

У вас есть личный опыт в ручном бурении? Возникли вопросы в ходе ознакомления с представленным нами материалом, хотите поделиться только вам известными тонкостями? Пишите, пожалуйста, комментарии в расположенном ниже блоке, задавайте вопросы, оставляйте фото по теме.

sovet-ingenera.com


Смотрите также